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a b s t r a c t

We derive the class of affine arbitrage-free dynamic term structure models that approximate the widely
used Nelson–Siegel yield curve specification. These arbitrage-free Nelson–Siegel (AFNS) models can
be expressed as slightly restricted versions of the canonical representation of the three-factor affine
arbitrage-free model. Imposing the Nelson–Siegel structure on the canonical model greatly facilitates
estimation and can improve predictive performance. In the future, AFNS models appear likely to be a
useful workhorse representation for term structure research.
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1. Introduction

Understanding the dynamic evolution of the yield curve is im-
portant for many tasks, including pricing financial assets and their
derivatives, managing financial risk, allocating portfolios, struc-
turing fiscal debt, conducting monetary policy, and valuing cap-
ital goods. To investigate yield curve dynamics, researchers have
produced a vast literature with a wide variety of models. How-
ever, those models tend to be either theoretically rigorous but em-
pirically disappointing, or empirically successful but theoretically
lacking. In this paper, we introduce a theoretically rigorous yield
curve model that simultaneously displays empirical tractability,
good fit, and good forecasting performance.

Because bonds trade in deep and well-organized markets, the
theoretical restrictions that eliminate opportunities for riskless
arbitrage across maturities and over time hold powerful appeal,
and they provide the foundation for a large finance literature
on arbitrage-free (AF) models that started with Vasiček (1977)
and Cox et al. (1985). Those models specify the risk-neutral
evolution of the underlying yield curve factors as well as the
dynamics of risk premia. Following Duffie and Kan (1996), the
affine versions of those models are particularly popular, because
yields are convenient linear functions of underlying latent factors
(state variables that are unobserved by the econometrician) with
parameters, or ‘‘factor loadings’’, that can be calculated from a
simple system of differential equations.
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Unfortunately, the canonical affine AF models often exhibit
poor empirical time series performance, especially when forecast-
ing future yields (Duffee, 2002). In addition, and crucially, the es-
timation of those models is known to be problematic, in large part
because of the existence of numerous likelihoodmaxima that have
essentially identical fit to the data but very different implications
for economic behavior. The empirical problems appear to reflect an
underlying model over-parameterization, and as a solution, many
researchers (e.g. Duffee, 2002; Dai and Singleton, 2002) simply re-
strict to zero those parameters with small t-statistics in a first
round of estimation. The resulting more parsimonious structure
is typically somewhat easier to estimate and has fewer trouble-
some likelihood maxima. However, the additional restrictions on
model structure are not well motivated theoretically or statisti-
cally, and their arbitrary application and the computational bur-
den of estimation effectively preclude robust model validation and
thorough simulation studies of the finite-sample properties of the
estimators.

In part to overcome the problems with empirical implementa-
tion of the canonical affine AF model, we develop in this paper a
new class of affine AF models based on the workhorse yield curve
representation introduced by Nelson and Siegel (1987) and ex-
tended to dynamic environments by Diebold and Li (2006). (We re-
fer to the Diebold–Li extension as dynamic Nelson–Siegel, or DNS.)
Thus, from one perspective, we take the theoretically rigorous but
empirically problematic affine AF model and make it empirically
tractable by incorporating DNS elements.

From an alternative perspective, we take the DNSmodel, which
is empirically successful but theoretically lacking, and make it
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rigorous by imposing absence of arbitrage. This rigor is important
because the Nelson–Siegel model is extremely popular in practice,
among both financial market practitioners and central banks
(e.g., Svensson, 1995; Bank for International Settlements, 2005;
Gürkaynak et al., 2007). DNS’s popularity stems from several
sources, both empirical and theoretical, as discussed in Diebold
and Li (2006). Empirically, the DNS model is simple and stable to
estimate, and it is quite flexible and fits both the cross-section
and time series of yields remarkably well, in many countries and
periods, and for many grades of bonds. Theoretically, DNS imposes
certain economically desirable properties, such as requiring the
discount function to approach zerowithmaturity, and Diebold and
Li (2006) show that it corresponds to a modern three-factor model
of time-varying level, slope and curvature. However, despite its
good empirical performance and a certain amount of theoretical
appeal, DNS fails on an important theoretical dimension: it does
not impose the restrictions necessary to eliminate opportunities
for riskless arbitrage (e.g. Filipović, 1999; Diebold et al., 2005).
This motivates us in this paper to introduce the class of AF
Nelson–Siegel (AFNS) models, which are affine AF term structure
models that maintain the DNS factor loading structure.

In short, the AFNS models proposed here combine the best
of the AF and DNS traditions. Approached from the AF side,
they maintain the AF theoretical restrictions of the canonical
affine models but can be easily estimated, because the dynamic
Nelson–Siegel structure helps to identify the latent yield curve
factors and delivers analytical solutions (which we provide) for
zero-coupon bond prices. Approached from the DNS side, they
maintain the simplicity and empirical tractability of the popular
DNS models, while simultaneously enforcing the theoretically
desirable property of absence of riskless arbitrage.

After deriving the new class of AFNS models, we examine their
in-sample fit and out-of-sample forecast performance relative
to standard DNS models. For both the DNS and the AFNS
models,we estimate parsimonious and flexible versions (with both
independent factors and more richly parameterized correlated
factors). We find that the flexible versions of both models are
preferred for in-sample fit, but that the parsimonious versions
exhibit significantly better out-of-sample forecast performance.
As a final comparison, we also show that an AFNS model can
outperform the canonical affine AF model in forecasting.

We proceed as follows. First we present the main theoretical
results of the paper; in Section 2 we derive the AFNS class of
models, and in Section 3 we characterize the precise relationship
between the AFNS class and the canonical representation of affine
AF models. We next provide an empirical analysis of four leading
DNS and AFNS models, incorporating both parsimonious and
flexible versions; in Section 4 we examine in-sample fit, and in
Section 5 we examine out-of-sample forecasting performance.
We conclude in Section 6, and we provide proofs and additional
technical details in several appendices.

2. Nelson–Siegel term structure models

Here we review the DNSmodel and introduce the AFNS class of
AF affine term structure models that maintain the Nelson–Siegel
factor loading structure.

2.1. The dynamic Nelson–Siegel model

The original Nelson–Siegel model fits the yield curve with the
simple functional form

y(τ ) = β0 + β1


1 − e−λτ

λτ


+ β2


1 − e−λτ

λτ
− e−λτ


, (1)
where y(τ ) is the zero-coupon yield with τ months to maturity,
and β0, β1, β2, and λ are parameters.

As noted earlier, this representation is commonly used by
central banks and financial market practitioners to fit the cross-
section of yields. Although such a static representation is useful
for some purposes, a dynamic version is required to understand
the evolution of the bond market over time. Hence Diebold and
Li (2006) suggest allowing the β coefficients to vary over time,
in which case, given their Nelson–Siegel loadings, the coefficients
may be interpreted as time-varying level, slope and curvature
factors. To emphasize this, we re-write the model as

yt(τ ) = Lt + St


1 − e−λτ

λτ


+ Ct


1 − e−λτ

λτ
− e−λτ


. (2)

Diebold and Li assume an autoregressive structure for the factors,
which produces the DNS model, a fully dynamic Nelson–Siegel
specification. Indeed, it is a state-space model, with the yield
factors as state variables, as emphasized in Diebold et al. (2006).

Empirically, the DNS model is highly tractable and typically fits
well. Theoretically, however, it does not require that the dynamic
evolution of yields cohere such that arbitrage opportunities are
precluded. Indeed, the results of Filipović (1999) imply that
whatever stochastic dynamics are chosen for the DNS factors, it
is impossible to preclude arbitrage at the bond prices implicit in
the resulting Nelson–Siegel yield curve. In the next subsection, we
show how to remedy this theoretical weakness.

2.2. The arbitrage-free Nelson–Siegel model

Our derivation of the AFNS model starts from the standard
continuous-time affine AF structure of Duffie and Kan (1996).1 To
represent an affine diffusion process, define a filtered probability
space (Ω,F , (Ft),Q ), where the filtration (Ft) = {Ft : t ≥ 0}
satisfies the usual conditions (Williams, 1997). The state variable
Xt is assumed to be a Markov process defined on a setM ⊂ Rn that
solves the stochastic differential equation (SDE),2

dXt = KQ (t)[θQ (t)− Xt ]dt +Σ(t)D(Xt , t)dW
Q
t , (3)

where WQ is a standard Brownian motion in Rn, the information
of which is contained in the filtration (Ft). The drifts and dynamics
θQ : [0, T ] → Rn andKQ

: [0, T ] → Rn×n are bounded, continuous
functions.3 Similarly, the volatility matrix Σ : [0, T ] → Rn×n

is a bounded, continuous function, while D : M × [0, T ] →

Rn×n has a diagonal structure with ith diagonal entry given by
γ i(t)+ δi1(t)x

1
t + · · · + δin(t)x

n
t .

To simplify the notation, γ (t) and δ(t) are defined as

γ (t) =

γ
1(t)
...

γ n(t)

 and δ(t) =

δ
1
1(t) · · · δ1n(t)
...

. . .
...

δn1(t) · · · δnn(t)

 ,
where γ : [0, T ] → Rn and δ : [0, T ] → Rn×n are bounded,
continuous functions. Given this notation, the SDE of the state
variables can be written as
dXt = KQ (t)[θQ (t)− Xt ]dt +Σ(t)

×



γ 1(t)+ δ1(t)Xt · · · 0

...
. . .

...

0 · · ·

γ n(t)+ δn(t)Xt

 dWQ
t ,

1 Krippner (2006) derives a special case of the AFNS model with constant risk
premiums.
2 Note that (3) refers to the risk-neutral (‘‘Q ’’) dynamics.
3 Stationarity of the state variables is ensured if the real components of all

eigenvalues of KQ (t) are positive; see Ahn et al. (2002). However, stationarity is
not a necessary requirement for the process to be well defined.
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where δi(t) denotes the ith row of the δ(t) matrix. Finally, the
instantaneous risk-free rate is assumed to be an affine function of
the state variables

rt = ρ0(t)+ ρ1(t)′Xt ,

where ρ0 : [0, T ] → R and ρ1 : [0, T ] → Rn are bounded,
continuous functions.

Duffie and Kan (1996) prove that zero-coupon bond prices
in this framework are exponential affine functions of the state
variables,

P(t, T ) = EQ
t

[
exp


−

∫ T

t
rudu

]
= exp(B(t, T )′Xt + A(t, T )),

where B(t, T ) and A(t, T ) are the solutions to the system of
ordinary differential equations (ODEs)

dB(t, T )
dt

= ρ1 + (KQ )′B(t, T )

−
1
2

n−
j=1

(Σ ′B(t, T )B(t, T )′Σ)j,j(δj)′, B(T , T ) = 0, (4)

dA(t, T )
dt

= ρ0 − B(t, T )′KQ θQ

−
1
2

n−
j=1

(Σ ′B(t, T )B(t, T )′Σ)j,jγ j, A(T , T ) = 0, (5)

and the possible time dependence of the parameters is suppressed
in the notation. The pricing functions imply that zero-coupon
yields are

y(t, T ) = −
1

T − t
log P(t, T ) = −

B(t, T )′

T − t
Xt −

A(t, T )
T − t

.

Given the pricing functions, for a three-factor affine model with
Xt = (X1

t , X
2
t , X

3
t ), the closest match to the Nelson–Siegel yield

function is a yield function of the form4

y(t, T ) = X1
t +

1 − e−λ(T−t)

λ(T − t)
X2
t

+

[
1 − e−λ(T−t)

λ(T − t)
− e−λ(T−t)

]
X3
t −

A(t, T )
T − t

,

with ODEs for the B(t, T ) functions that have the solutions

B1(t, T ) = −(T − t),

B2(t, T ) = −
1 − e−λ(T−t)

λ
,

B3(t, T ) = (T − t)e−λ(T−t)
−

1 − e−λ(T−t)

λ
.

In this case the factor loadings exactly match Nelson–Siegel, but
there is an unavoidable ‘‘yield-adjustment term’’, −

A(t,T )
T−t , which

depends only on thematurity of the bond, not on time. As described
in the following proposition, there exists a class of affine AFmodels
that satisfies the above ODEs.

Proposition 1. Suppose that the instantaneous risk-free rate is

rt = X1
t + X2

t ,

4 One could of course define ‘‘closest’’ in other ways. Our strategy is to find the
affine AF model with factor loadings that match Nelson–Siegel exactly.
where the state variables Xt = (X1
t , X

2
t , X

3
t ) are described by the

following system of SDEs under the risk-neutral Q -measuredX1
t

dX2
t

dX3
t

 =

0 0 0
0 λ −λ
0 0 λ


θ

Q
1

θ
Q
2

θ
Q
3

−

X1
t

X2
t

X3
t


 dt

+Σ

dW 1,Q
t

dW 2,Q
t

dW 3,Q
t

 , λ > 0.

Then zero-coupon bond prices are

P(t, T ) = EQ
t

[
exp


−

∫ T

t
rudu

]
= exp(B1(t, T )X1

t + B2(t, T )X2
t + B3(t, T )X3

t + A(t, T )),

where B1(t, T ), B2(t, T ), B3(t, T ), and A(t, T ) are the solutions to the
system of ODEs:

dB1(t, T )
dt

dB2(t, T )
dt

dB3(t, T )
dt

 =

1
1
0


+

0 0 0
0 λ 0
0 −λ λ

B1(t, T )
B2(t, T )
B3(t, T )

 (6)

and

dA(t, T )
dt

= −B(t, T )′KQ θQ −
1
2

3−
j=1

(Σ ′B(t, T )B(t, T )′Σ)j,j, (7)

with boundary conditions B1(T , T ) = B2(T , T ) = B3(T , T ) =

A(T , T ) = 0. The solution to this system of ODEs is:

B1(t, T ) = −(T − t),

B2(t, T ) = −
1 − e−λ(T−t)

λ
,

B3(t, T ) = (T − t)e−λ(T−t)
−

1 − e−λ(T−t)

λ
,

A(t, T ) = (KQ θQ )2

∫ T

t
B2(s, T )ds + (KQ θQ )3

∫ T

t
B3(s, T )ds

+
1
2

3−
j=1

∫ T

t
(Σ ′B(s, T )B(s, T )′Σ)j,jds.

Finally, zero-coupon bond yields are

y(t, T ) = X1
t +

1 − e−λ(T−t)

λ(T − t)
X2
t

+

[
1 − e−λ(T−t)

λ(T − t)
− e−λ(T−t)

]
X3
t −

A(t, T )
T − t

.

Proof. See Appendix A. �

The existence of an AFNS model, as defined in Proposition 1, is
related to the work of Trolle and Schwartz (2009), who show that
the dynamics of the forward rate curve in a generalm-dimensional
Heath–Jarrow–Morton (HJM) model can always be represented
by a finite-dimensional Markov process with time-homogeneous
volatility structure if each volatility function is given by

σi(t, T ) = pn,i(T − t)e−γi(T−t), i = 1, . . . ,m,

where pn,i(τ ) is an nth-order polynomial in τ . Because the forward
rates in the DNS model satisfy this requirement, there exists such
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an AF three-dimensional HJM model. However, the simplicity of
the solution in the case of the Nelson–Siegel model presented in
Proposition 1 is striking.

Proposition 1 also has several interesting implications. First, the
three state variables are Gaussian Ornstein–Uhlenbeck processes
with a constant volatility matrix Σ .5 The instantaneous interest
rate is the sum of level and slope factors (X1

t and X2
t ), while

the curvature factor’s (X3
t ) sole role is as a stochastic time-

varying mean for the slope factor under the Q -measure. Second,
Proposition 1 only imposes structure on the dynamics of the AFNS
model under the Q -measure and is silent about the dynamics
under the P-measure. Still, the very indirect role of curvature
generally accords with the empirical literature where it has been
difficult to find sensible interpretations of curvature under the
P-measure (Diebold et al., 2006). Similarly, the level factor is a
unit-root process under the Q -measure, which accords with the
usual finding that one or more of the interest rate factors are close
to being nonstationary processes under the P-measure.6 Third,
Proposition 1 provides insight into the nature of the parameter
λ. Although a few authors (e.g. Koopman et al., 2010) have
considered time-varying λ, it is a constant in the AFNS model
and has the interpretation as the mean-reversion rate of the
curvature and slope factors aswell as the scale bywhich a deviation
of the curvature factor from its mean affects the mean of the
slope factor. Fourth, and crucially, AFNS contains an additional
maturity-dependent term −

A(t,T )
T−t relative to DNS. This ‘‘yield-

adjustment’’ term is a key difference between DNS and AFNS, and
we now examine it in detail.

2.3. The yield-adjustment term

The only parameters in the system of ODEs for the AFNS B(t, T )
functions are ρ1 and KQ , i.e., the factor loadings of rt and themean-
reversion structure for the state variables under the Q -measure.
The drift term θQ and the volatility matrixΣ do not appear in the
ODEs, but rather in the yield-adjustment term−

A(t,T )
T−t . Hence in the

AFNS model the choice of the volatility matrix Σ affects both the
P-dynamics and the yield function through the yield-adjustment
term. In contrast, the DNS model is silent about the real-world
dynamics of the state variables, so the choice of P-dynamics is
irrelevant for the yield function.

As discussed in the next section,we identify theAFNSmodels by
fixing the mean levels of the state variables under the Q -measure
at 0, i.e. θQ = 0. This implies that the yield-adjustment term is of
the form:

−
A(t, T )
T − t

= −
1
2

1
T − t

3−
j=1

∫ T

t
(Σ ′B(s, T )B(s, T )′Σ)j,jds.

Given a general volatility matrix

Σ =


σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33


,

5 Proposition 1 can be extended to include jumps in the state variables. As long
as the jump arrival intensity is state independent, the Nelson–Siegel factor loading
structure in the yield function is maintained because only A(t, T ) is affected by the
inclusion of such jumps. See Duffie et al. (2000) for the needed modification of the
ODE for A(t, T ) in this case.
6 With a unit root in the level factor,− A(t,T )

T−t → −∞ asmaturity increases, which
implies thatwith anunboundedhorizon T themodel is not arbitrage free. Therefore,
as is often done in theoretical discussions, we impose an arbitrary maximum
horizon. Alternatively, we could modify the mean-reversion matrix KQ to include a
sufficiently small ε > 0 in the upper left-hand position to obtain an AF model that
is indistinguishable from the AFNS model in Proposition 1.
the yield-adjustment term can be derived in analytical form (see
Appendix B) as

A(t, T )
T − t

=
1
2

1
T − t

∫ T

t

3−
j=1

(Σ ′B(s, T )B(s, T )′Σ)j,jds

= A
(T − t)2

6
+ B

[
1

2λ2
−

1
λ3

1 − e−λ(T−t)

T − t
+

1
4λ3

1 − e−2λ(T−t)

T − t

]
+ C


1

2λ2
+

1
λ2

e−λ(T−t)
−

1
4λ
(T − t)e−2λ(T−t)

−
3

4λ2
e−2λ(T−t)

−
2
λ3

1 − e−λ(T−t)

T − t
+

5
8λ3

1 − e−2λ(T−t)

T − t



+D
[

1
2λ
(T − t)+

1
λ2

e−λ(T−t)
−

1
λ3

1 − e−λ(T−t)

T − t

]
+ E


3
λ2

e−λ(T−t)
+

1
2λ
(T − t)

+
1
λ
(T − t)e−λ(T−t)

−
3
λ3

1 − e−λ(T−t)

T − t



+ F


1
λ2

+
1
λ2

e−λ(T−t)
−

1
2λ2

e−2λ(T−t)

−
3
λ3

1 − e−λ(T−t)

T − t
+

3
4λ3

1 − e−2λ(T−t)

T − t


,

where A = σ 2
11 + σ 2

12 + σ 2
13, B = σ 2

21 + σ 2
22 + σ 2

23, C = σ 2
31 + σ 2

32 +

σ 2
33,D = σ11σ21 + σ12σ22 + σ13σ23, E = σ11σ31 + σ12σ32 + σ13σ33,

and F = σ21σ31 + σ22σ32 + σ23σ33.
This result has two implications. First, the fact that AFNS zero-

coupon bond yields are given by an analytical formula greatly
facilitates empirical implementation of AFNS models. Second, the
nine underlying volatility parameters are not identified. Indeed,
only the six terms A, B, C,D, E, and F can be identified; hence the
maximally flexible AFNS specification that can be identified has
triangular volatility matrix7

Σ =


σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


.

Later we will quantify the yield-adjustment term and examine
how it affects empirical performance in leading specifications, to
which we now turn.

2.4. Four specific Nelson–Siegel models

In general, the DNS and AFNS models are silent about the P-
dynamics, so there are an infinite number of possible specifications
that could be used to match the data. However, for continuity with
the existing literature, we focus on two versions of the DNS model
that have featured prominently in recent studies, examining the
effects of imposing absence of arbitrage.

In the independent-factor DNS model, the three state variables
are independent first-order autoregressions, as in Diebold and Li
(2006). The state transition equation isLt − µL
St − µS
Ct − µC


=

a11 0 0
0 a22 0
0 0 a33

Lt−1 − µL
St−1 − µS
Ct−1 − µC


+


ηt(L)
ηt(S)
ηt(C)


,

7 The choice of upper or lower triangular is irrelevant.
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where the stochastic shocks ηt(L), ηt(S), and ηt(C) have covari-
ance matrix

Q =

q211 0 0
0 q222 0
0 0 q233

 .
In the correlated-factor DNS model, the state variables follow a
first-order vector autoregression, as in Diebold et al. (2006). The
transition equation isLt − µL
St − µS
Ct − µC


=

a11 a12 a13
a21 a22 a23
a31 a32 a33

Lt−1 − µL
St−1 − µS
Ct−1 − µC


+


ηt(L)
ηt(S)
ηt(C)


,

where the stochastic shocks ηt(L), ηt(S), and ηt(C) have covari-
ance matrix Q = qq′, where

q =

q11 0 0
q21 q22 0
q31 q32 q33


.

In both the independent-factor and correlated-factor DNS models,
the measurement equation is


yt(τ1)
yt(τ2)
...

yt(τN)

 =



1
1 − e−λτ1

λτ1

1 − e−λτ1

λτ1
− e−λτ1

1
1 − e−λτ2

λτ2

1 − e−λτ2

λτ2
− e−λτ2

...
...

...

1
1 − e−λτN

λτN

1 − e−λτN

λτN
− e−λτN



×

Lt
St
Ct


+


εt(τ1)
εt(τ2)
...

εt(τN)

 , (8)

where the measurement errors εt(τi) are i.i.d. white noise.
The corresponding AFNS models are formulated in continuous

time, and the relationship between the real-world dynamics
under the P-measure and the risk-neutral dynamics under the Q -
measure is given by the measure change

dWQ
t = dW P

t + Γtdt,
whereΓt represents the risk premium. To preserve affine dynamics
under the P-measure, we limit our focus to essentially affine risk
premium specifications (see Duffee, 2002), in which case Γt takes
the form

Γt =

γ 0
1
γ 0
2
γ 0
3

+

γ 1
11 γ 1

12 γ 1
13

γ 1
21 γ 1

22 γ 1
23

γ 1
31 γ 1

32 γ 1
33

X1
t

X2
t

X3
t

 .
With this specification the SDE for the state variables under the P-
measure,

dXt = K P
[θ P − Xt ]dt +ΣdW P

t , (9)
remains affine. Due to the flexible specification ofΓt , we are free to
choose any mean vector θ P and mean-reversion matrix K P under
the P-measure and still preserve the requiredQ -dynamic structure
described in Proposition 1.Hencewe focus on the twoAFNSmodels
that correspond to the two DNS models above.

In the independent-factor AFNS model, the three state variables
are independent under the P-measure,dX1

t
dX2

t
dX3

t

 =

κP
11 0 0
0 κP

22 0
0 0 κP

33

θ P1θ P2
θ P3

−

X1
t

X2
t

X3
t

 dt

+


σ1 0 0
0 σ2 0
0 0 σ3

dW 1,P
t

dW 2,P
t

dW 3,P
t

 .
In the correlated-factor AFNS model, the three state variables may
interact dynamically and/or their shocks may be correlated,dX1

t
dX2

t
dX3

t

 =

κP
11 κP

12 κP
13

κP
21 κP

22 κP
23

κP
31 κP

32 κP
33

θ P1θ P2
θ P3

−

X1
t

X2
t

X3
t

 dt

+


σ11 0 0
σ21 σ22 0
σ31 σ32 σ33

dW 1,P
t

dW 2,P
t

dW 3,P
t

 .
This is themost flexible AFNSmodelwith all parameters identified.
In both the independent-factor and correlated-factor AFNSmodels,
the measurement equation is


yt(τ1)
yt(τ2)
...

yt(τN)

 =



1
1 − e−λτ1

λτ1

1 − e−λτ1

λτ1
− e−λτ1

1
1 − e−λτ2

λτ2

1 − e−λτ2

λτ2
− e−λτ2

...
...

...

1
1 − e−λτN

λτN

1 − e−λτN

λτN
− e−λτN


X1

t
X2
t

X3
t



−



A(τ1)
τ 1

A(τ2)
τ 2
...

A(τN)
τN


+


εt(τ1)
εt(τ2)
...

εt(τN)

 , (10)

where the measurement errors εt(τi) are i.i.d. noise.

3. The AFNS subclass of canonical affine AF models

Before proceeding to an empirical analysis of the various DNS
andAFNSmodels,we first answer a key theoretical question:What,
precisely, are the restrictions that the AFNS model imposes on the
canonical representation of three-factor affine AF models?8

Denoting the state variables by Yt , the canonical A0(3)model is

rt = δn0 + (δn1)
′Yt

dYt = K P
n [θ Pn − Yt ]dt +ΣndW P

t

dYt = KQ
n [θQn − Yt ]dt +ΣndW

Q
t ,

with δn0 ∈ R, δn1, θ
P
n , θ

Q
n ∈ R3, and K P

n , K
Q
n ,Σn ∈ R3×3.9 If the

essentially affine risk premium specification Γt = γ 0
n + γ 1

n Yt
is imposed on the model, the drift terms under the P-measure
(K P

n , θ
P
n ) can be chosen independently of the drift terms under the

Q -measure (KQ
n , θ

Q
n ).

Because the latent state variables may rotate without changing
the probability distribution of bond yields, not all parameters
in the above model can be identified. Singleton (2006) imposes
identifying restrictions under the Q -measure. Specifically, he sets
the mean θQn = 0, the volatility matrix Σn equal to the identity
matrix, and he sets the mean-reversion matrix KQ

n equal to a

8 By this we mean the A0(3) representation with three state variables and zero
square-root processes, as detailed in Singleton (2006, Chap. 12).
9 Note that Yt denotes the state variables of the canonical representation, which

are different from the Xt state variables in the AFNS models, and that subscripts or
superscripts of ‘‘n’’ denote coefficients in the canonical representation.
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Table 1
AFNS parameter restrictions on the A0(3) canonical representation.

AFNS model δn0 , δ
n
1 KQ

n K P
n θ Pn Restrictions

Independent factor δn0 = 0 κ
n,Q
1,1 = κ

n,Q
1,2 = κ

n,Q
1,3 = 0 K P

n is diagonal No restriction 12
δn1,3 = 0 κ

n,Q
2,2 = κ

n,Q
3,3

Correlated factor δn0 = 0 κ
n,Q
1,1 = 0 No restriction No restriction 3
κ
n,Q
2,2 = κ

n,Q
3,3
triangular matrix.10 The canonical representation then has Q -
dynamicsdY 1

t
dY 2

t
dY 3

t

 = −

κn,Q
11 κ

n,Q
12 κ

n,Q
13

0 κ
n,Q
22 κ

n,Q
23

0 0 κ
n,Q
33

Y 1
t

Y 2
t

Y 3
t

 dt

+

1 0 0
0 1 0
0 0 1

dW 1,Q
t

dW 2,Q
t

dW 3,Q
t

 ,
and P-dynamicsdY 1

t
dY 2

t
dY 3

t

 =

κn,P
11 κ

n,P
12 κ

n,P
13

κ
n,P
21 κ

n,P
22 κ

n,P
23

κ
n,P
31 κ

n,P
32 κ

n,P
33

θn,P1
θ
n,P
2
θ
n,P
3

−

Y 1
t

Y 2
t

Y 3
t

 dt

+

1 0 0
0 1 0
0 0 1

dW 1,P
t

dW 2,P
t

dW 3,P
t

 .
The instantaneous risk-free rate is
rt = δn0 + δn1,1Y

1
t + δn1,2Y

2
t + δn1,3Y

3
t .

Hence there are 22 free parameters in the canonical representation
of the A0(3)model class.11

In the AFNS class, the mean-reversion matrix under the Q -
measure is triangular, so it is straightforward to derive the
restrictions that must be imposed on the canonical affine
representation to obtain the class of AFNS models. The procedure
through which the restrictions are identified is based on the so-
called affine invariant transformations. Appendix C describes such
transformations and derives the restrictions associated with the
AFNSmodels considered in this paper. The results are summarized
in Table 1, which shows that for the correlated-factor AFNS model
there are three key parameter restrictions on the canonical affine
model. First, δn0 = 0, so there is no constant in the equation for
the instantaneous risk-free rate. There is no need for this constant
because, with the second restriction κn,Q

1,1 = 0, the first factor must
be a unit-root process under the Q -measure, which also implies
that this factor can be identified as the level factor. Finally, κn,Q

2,2 =

κ
n,Q
3,3 , so the own mean-reversion rates of the second and third

factors under the Q -measure must be identical. The independent-
factor AFNS model maintains the three parameter restrictions and
adds nine others under both the P- and Q -measures.12

The Nelson–Siegel parameter restrictions on the canonical
affine AFmodel greatly facilitate estimation.13 They allow a closed-

10 Without loss of generality, wewill take it to be upper triangular inwhat follows.
11 Note that, given this canonical representation, there is no loss of generality in
fixing the AFNSmodel mean under the Q -measure at 0 and leaving themean under
the P-measure, θ P , to be estimated.
12 For both specifications, there is a further modest restriction described in
Appendix C: κn,Q

2,3 must have the opposite sign of κn,Q
2,2 and κn,Q

3,3 , but its absolute
numerical size can vary freely.
13 Note that in the AFNS model, the connection between the P-dynamics and
the yield function is explicitly tied to the yield-adjustment term through the
specification of the volatility matrix, while in the canonical representation it is
blurred by an interplay between the specifications of δn1 and KQ

n .
form solution and, as described in the next section, eliminate in
an appealing way the surfeit of troublesome likelihood maxima in
estimation.

4. Estimation and in-sample fit of DNS and AFNS models

Thus far we have derived the affine AF class of Nelson–Siegel
term structure models, and we have explicitly characterized the
restrictions that it places on the canonical A0(3) model. Here
we undertake estimation of the AFNS model and illustrate its
relative simplicity. We proceed in several steps. First we introduce
the state-space/Kalman-filter maximum-likelihood estimation
framework that we employ throughout. Second, we estimate and
compare independent- and correlated-factor DNS models. Third,
we estimate independent- and correlated-factor AFNS models,
which we compare to each other and to their DNS counterparts,
devoting special attention to the estimated yield-adjustment
terms. Throughout, our estimates are based on monthly US
Treasury bill and bond yields from January 1987 toDecember 2002.
The data are end-of-month, unsmoothed (Fama and Bliss, 1987)
zero-coupon yields at sixteen maturities: 3, 6, 9, 12, 18, 24, 36, 48,
60, 84, 96, 108, 120, 180, 240, and 360 months.

4.1. Estimation framework

We first display the state-space representations of the DNS and
AFNS models. For the DNS models, the state transition equation is

Xt = (I − A)µ+ AXt−1 + ηt ,

where Xt = (Lt , St , Ct), and the measurement equation is

yt = BXt + εt . (11)

For the continuous-time AFNS models, the conditional mean
vector and the conditional covariance matrix are

EP
[XT |Ft ] = (I − exp(−K P1t))θ P + exp(−K P1t)Xt ,

V P
[XT |Ft ] =

∫ 1t

0
e−KP sΣΣ ′e−(KP )′sds,

where1t = T − t . We compute conditional moments of discrete
observations and obtain the AFNS state transition equation

Xt = (I − exp(−K P1t))θ P + exp(−K P1t)Xt−1 + ηt ,

where 1t is the time between observations. The AFNS measure-
ment equation is14

yt = A + BXt + εt .

In both the DNS and AFNS environments, the assumed error
structure is
ηt
εt


∼ N

[
0
0


,


Q 0
0 H

]
,

14 Note that the matrix B is identical in the DNS and AFNS models (compare
Eqs. (8) and (10)). The only difference is the addition of the vector A containing the
yield-adjustment terms in the AFNS models.
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where thematrix H is diagonal, and thematrix Q is diagonal in the
independent-factor and non-diagonal in the correlated-factor case.
In the AFNS case, moreover, Q has special structure,

Q =

∫ 1t

0
e−KP sΣΣ ′e−(KP )′sds.

In addition, the transition and measurement errors are assumed
orthogonal to the initial state.

Now we consider Kalman filtering, which we use to evaluate
the likelihood functions of the DNS and AFNS models. We
initialize the filter at the unconditional mean and variance of
the state variables under the P-measure.15 For the DNS models
wehaveX0 = µ andΣ0 = V , whereV solvesV = AVA′

+Q . For the
AFNS models we have X0 = θ P andΣ0 =


∞

0 e−KP sΣΣ ′e−(KP )′sds,
which we calculate using the analytical solutions provided in
Fisher and Gilles (1996).

Denote the information available at time t by Yt = (y1, y2, . . . ,
yt), and denote model parameters by ψ . Consider period t − 1
and suppose that the state update Xt−1 and its mean square error
matrixΣt−1 have been obtained. The prediction step is

Xt|t−1 = EP
[Xt |Yt−1] = Φ

X,0
t (ψ)+ Φ

X,1
t (ψ)Xt−1,

Σt|t−1 = Φ
X,1
t (ψ)Σt−1Φ

X,1
t (ψ)′ + Qt(ψ),

where for the DNS models we have ΦX,0
t = (I − A)µ,ΦX,1

t = A,
and Qt = Q , and for the AFNS models we have ΦX,0

t = (I −

exp(−K P1t))θ P ,ΦX,1
t = exp(−K P1t), and Qt =

 1t
0 e−KP sΣΣ ′

e−(KP )′sds, where1t is the time between observations.
In the time t update step, Xt|t−1 is improved by using the

additional information contained in Yt . We have

Xt = E[Xt |Yt ] = Xt|t−1 +Σt|t−1B(ψ)′F−1
t vt ,

Σt = Σt|t−1 −Σt|t−1B(ψ)′F−1
t B(ψ)Σt|t−1,

where

vt = yt − E[yt |Yt−1] = yt − A(ψ)− B(ψ)Xt|t−1,

Ft = cov(vt) = B(ψ)Σt|t−1B(ψ)′ + H(ψ),

H(ψ) = diag(σ 2
ε (τ1), . . . , σ

2
ε (τN)).

At this point, the Kalman filter has delivered all ingredients
needed to evaluate the Gaussian log likelihood, the prediction-
error decomposition of which is

log l(y1, . . . , yT ;ψ)

=

T−
t=1


−

N
2

log(2π)−
1
2
log |Ft | −

1
2
v′

tF
−1
t vt


,

where N is the number of observed yields. We numerically
maximize the likelihood with respect toψ using the Nelder–Mead
simplex algorithm. Upon convergence, we obtain standard errors
from the estimated covariance matrix,

Ω(ψ) =
1
T


1
T

T−
t=1

∂ log lt(ψ)
∂ψ

∂ log lt(ψ)
∂ψ

′
−1

,

where ψ denotes the estimated model parameters.

15 We ensure covariance stationarity under the P-measure in the DNS case by
restricting the eigenvalues of A to be less than 1, and in the AFNS case by restricting
the real component of each eigenvalue of K P to be positive.
Table 2
Estimated independent-factor DNS model. The top panel contains the estimated A
matrix and µ vector. The bottom panel contains the estimated q matrix. Standard
errors appear in parentheses. The estimated λ is 0.06040 (0.00100) for maturities
measured in months. The maximized log likelihood is 16,332.94.

A Matrix Mean

A·,1 A·,2 A·,3 µ

A1,· 0.9827 0 0 0.0696
(0.0128) (0.0137)

A2,· 0 0.9778 0 −0.0249
(0.0166) (0.0151)

A3,· 0 0 0.9189 −0.0108
(0.0284) (0.0079)

qMatrix

q·,1 q·,2 q·,3

q1,· 0.0025 0 0
(0.0002)

q2,· 0 0.0033 0
(0.0002)

q3,· 0 0 0.0075
(0.0004)

Table 3
Estimated correlated-factor DNS model. The top panel contains the estimated A
matrix and µ vector. The bottom panel contains the estimated q matrix. Standard
errors appear in parentheses. The estimated λ is 0.06248 (0.00109) for maturities
measured in months. The maximized log likelihood is 16,415.36.

A Matrix Mean

A·,1 A·,2 A·,3 µ

A1,· 0.9874 0.0050 −0.0097 0.0723
(0.0165) (0.0183) (0.0157) (0.0145)

A2,· 0.0066 0.9332 0.0819 −0.0294
(0.0228) (0.0229) (0.0202) (0.0159)

A3,· 0.0152 0.0401 0.9011 −0.0120
(0.0526) (0.0418) (0.0377) (0.0126)

q Matrix

q·,1 q·,2 q·,3

q1,· 0.0025 0 0
(0.0001)

q2,· −0.0022 0.0023 0
(0.0003) (0.0001)

q3,· 0.0028 0.0006 0.0066
(0.0007) (0.0006) (0.0004)

4.2. DNS model estimation

Independent-factor DNS estimates appear in Table 2, and
correlated-factor DNS estimates appear in Table 3. In both models
the level factor is the most persistent, and the curvature factor
is least persistent. In the correlated-factor DNS model, only one
off-diagonal element of the estimated A matrix is statistically
significant.16

Volatility parameters are most easily compared by converting
from Cholesky factors to conditional covariance matrices. For
independent-factor DNS we have

Q DNS
indep = qq′

=

6.17 × 10−6 0 0
0 1.11 × 10−5 0
0 0 5.58 × 10−5

 , (12)

and for correlated-factor DNS we have

Q DNS
corr = qq′

16 Interestingly, the significant parameter is ASt ,Ct−1 , which is the key non-zero
off-diagonal element required in Proposition 1 for the AFNS specification.



J.H.E. Christensen et al. / Journal of Econometrics 164 (2011) 4–20 11
Table 4
Summary statistics for in-sample model fit. Residual means and root mean squared errors for sixteen maturities. Maturities are in months; means and RMSEs are in basis
points.

Maturity DNS indep-factor DNS corr-factor AFNS indep-factor AFNS corr-factor
Mean RMSE Mean RMSE Mean RMSE Mean RMSE

3 −1.64 12.26 −1.84 11.96 −2.85 18.53 −2.49 11.55
6 −0.24 1.09 −0.29 1.34 −1.19 7.12 −0.03 0.64
9 −0.54 7.13 −0.51 6.92 −1.24 3.45 −0.33 6.91

12 4.04 11.19 4.11 10.86 3.58 9.60 3.72 10.14
18 7.22 10.76 7.28 10.42 7.14 10.43 5.53 8.33
24 1.18 5.83 1.19 5.29 1.37 5.94 −1.18 4.37
36 −0.07 1.51 −0.19 2.09 0.30 1.98 −1.10 3.16
48 −0.67 3.92 −0.85 4.03 −0.40 3.72 0.93 4.13
60 −5.33 7.13 −5.51 7.31 −5.27 6.82 −2.01 5.22
84 −1.22 4.25 −1.30 4.25 −1.50 4.29 0.89 3.83
96 1.31 2.10 1.29 2.02 1.03 2.11 1.05 1.83

108 0.03 2.94 0.07 3.11 −0.11 3.02 −3.23 5.26
120 −5.11 8.51 −5.01 8.53 −4.95 8.23 −11.65 14.00
180 24.11 29.44 24.40 29.66 27.87 32.66 3.85 16.53
240 25.61 34.99 26.00 35.33 35.96 42.61 4.32 23.97
360 −29.62 37.61 −29.12 37.18 1.37 22.03 −0.81 23.04
=

 6.03 × 10−6
−5.47 × 10−6 6.76 × 10−6

−5.47 × 10−6 1.01 × 10−5
−4.73 × 10−6

6.76 × 10−6
−4.73 × 10−6 5.09 × 10−5

 . (13)

The variances of shocks to each state variable are similar across
the independent- and correlated-factor DNS models, with level
factor shocks the least volatile and curvature factor shocks the
most volatile. The covariance estimates obtained in the correlated-
factor DNS model translate into a correlation of −0.701 for shocks
to the level and slope factors, a correlation of 0.385 for shocks to the
level and curvature factors, and a correlation of −0.208 for shocks
to the slope and curvature factors.

The independent- and correlated-factor DNSmodels are nested,
so we can test the independent-factor restrictions using a
standard likelihood-ratio (LR) test. Under the null hypothesis of
independent-factor DNS, LR = 2[log L(θcorr) − log L(θindep)] ∼

χ2(9). We obtain LR = 164.8, with associated p-value less than
0.0001, so we would formally reject the restrictions imposed
in the independent-factor DNS model. This rejection reflects an
elevated negative correlation between the shocks to the level and
slope factors and a significant positive correlation through the
mean-reversion matrix between changes in the slope factor and
deviations of the curvature factor from its mean.

Crucially, however, the extra parameters in the correlated-
factor model, although statistically significant, appear econom-
ically unimportant. That is, the increased flexibility of the
correlated-factor DNS model provides little advantage in fitting
observed yields, as documented in Table 4, which reports means
and root mean squared errors (RMSEs) for model residuals. The
RMSE differences appear negligible (typically less than one half of
one basis point), maturity-by-maturity, and no consistent advan-
tage across maturities accrues to the correlated-factor model. In-
terestingly, both models have difficulty fitting yields beyond the
ten-year maturity, which suggests that a maturity-dependent
yield-adjustment termcould improve fit.Wenowexamine the em-
pirical performance of AFNS models, which incorporate precisely
such yield adjustments.

4.3. AFNS model estimation

Thus far we have examined just one simple model (DNS),
comparing fit in the independent- and correlated-factor cases.
Now we bring AFNS into the mix, and things get more interesting.
In particular, we can compare independent- and correlated-
factor cases, with and without imposition of absence of arbitrage.
As many have noted, estimation of the canonical affine A0(3)
term structure model is very difficult and time-consuming and
effectively prevents the kind of repetitive re-estimation required
in a comprehensive simulation study or out-of-sample forecast
exercise, which we pursue with the AFNS model in the next
section.17 By comparison, the estimation of the AFNS model is
straightforward and robust in large part because the role of each
latent factor is not left unidentified as in the maximally flexible
A0(3) model. Even though the factors are latent in the AFNS
model, with theNelson–Siegel factor loading structure, they can be
clearly identified as level, slope, and curvature. This identification
eliminates the troublesome local maxima reported by Kim and
Orphanides (2005), i.e., maxima with likelihood values very close
to the global maximum but with very different interpretations of
the three factors and their dynamics.18

The estimated independent-factor AFNS model is reported in
Table 5. Although the independent-factor DNS and AFNS models
are non-nested, they contain the same number of parameters, so
their likelihoods can be compareddirectly. The lower log likelihood
value obtained for the AFNS model (16,280 vs. 16,332) suggests
weaker in-sample performance,which appears consistentwith the
RMSEs in Table 4.

Although the two independent-factor models differ statisti-
cally, they are quite similar economically, as can be seen in two
ways. First, we compare mean-reversion matrices, covariance ma-
trices, andmean vectors. To compare the independent-factor AFNS
mean-reversion matrix to that of the independent-factor DNS
model, we translate the continuous-timematrix in Table 5 into the
one-month conditional mean-reversion matrix,

exp


−K P 1
12


=

0.993 0 0
0 0.983 0
0 0 0.902


. (14)

Similarly, we convert the volatility matrix into a one-month
conditional covariance matrix

Q AFNS
indep =

∫ 1
12

0
e−KP sΣΣ ′e−(KP )′sds

17 For example, Rudebusch et al. (2006) report difficulty replicating the published
estimates of a no-arbitrage model even though they use identical data and
estimation programs.
18 Other strategies to facilitate estimation include adding survey information (Kim
andOrphanides, 2005) or assuming that the latent yield curve factors are observable
(Ang and Piazzesi, 2003).
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Table 5
Estimated independent-factor AFNSmodel. The toppanel contains the estimatedK P

matrix and θ P vector. The bottom panel contains the estimatedΣ matrix. Standard
errors appear in parentheses. The estimated λ is 0.5975 (0.0115) for maturities
measured in years. The maximized log likelihood is 16,279.92.

K P matrix Mean

K P
·,1 K P

·,2 K P
·,3 θ P

K P
1,· 0.0816 0 0 0.0710

(0.0615) (0.0129)
K P
2,· 0 0.2114 0 −0.0282

(0.1780) (0.0173)
K P
3,· 0 0 1.2330 −0.0093

(0.4240) (0.0061)

Σ matrix

Σ·,1 Σ·,2 Σ·,3

Σ1,· 0.0051 0 0
(0.0001)

Σ2,· 0 0.0110 0
(0.0006)

Σ3,· 0 0 0.0264
(0.0014)

=

2.15 × 10−6 0 0
0 9.94 × 10−6 0
0 0 5.26 × 10−5

 . (15)

Inspection reveals that the mean-reversion matrix and covariance
matrix (and also the factor mean vector) are similar across the
independent-factor DNS and AFNS models.

Second, the similarity of the independent-factor DNS and AFNS
models can be seen bynoting that theymake identical assumptions
about the P-dynamics and therefore differ only by the yield-
adjustment term, which is quite rigid in the independent-factor
case. In particular, the independent-factor AFNS yield adjustment
is

−
A(t, T )
T − t

= −
σ 2
11

2
1

T − t

∫ T

t
B1(s, T )2ds −

σ 2
22

2
1

T − t

×

∫ T

t
B2(s, T )2ds −

σ 2
33

2
1

T − t

∫ T

t
B3(s, T )2ds

= −σ 2
11
(T − t)2

6
− σ 2

22


1

2λ2
−

1
λ3

1 − e−λ(T−t)

T − t

+
1

4λ3
1 − e−2λ(T−t)

T − t


− σ 2

33


1

2λ2
+

1
λ2

e−λ(T−t)

−
1
4λ
(T − t)e−2λ(T−t)

−
3

4λ2
e−2λ(T−t)

−
2
λ3

1 − e−λ(T−t)

T − t
+

5
8λ3

1 − e−2λ(T−t)

T − t


,

and is plotted in Fig. 1. It is everywhere negative, monotonically
increasing in absolute value, and very smooth. Presumably a more
flexible yield-adjustment term is needed to achieve substantial
improvement in fit. The correlated-factor AFNS model, to which
we now turn, achieves this.

We beginwith twomodel comparisons that involve correlated-
factor AFNS. First consider independent- vs. correlated-factor
AFNS. The models are nested, so under the null hypothesis of
independent-factor AFNS, LR = 2[log L(θcorr) − log L(θindep)] ∼

χ2(9). We obtain LR = 428.7, with associated p-value less than
0.0001, so independent-factor AFNS is dominated by correlated-
factor AFNS. Second, consider correlated-factor DNS vs. correlated-
factor AFNS. Themodels are non-nested but contain equal numbers
of parameters, so we compare their log likelihoods directly,
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Fig. 1. Yield-adjustment terms for AFNS models.

with the clear result that correlated-factor DNS is dominated by
correlated-factor AFNS.

Combining the model comparison results above with those
reported earlier in Section 4.2, correlated-factor AFNS emerges as
the clear in-sample favorite among all the various combinations
of independent-factor, correlated-factor, DNS and AFNS models.
Presumably, this is due to the greater flexibility of the correlated-
factor AFNS yield adjustment. We report the estimated correlated-
factor AFNS model in Table 6, from which we can infer the
estimated yield adjustment. In population, the adjustment is

−
A(t, T )
T − t

= −σ 2
11
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6
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(T − t)+

1
λ2

e−λ(T−t)
−

1
λ3

1 − e−λ(T−t)

T − t

]
−σ11σ31


3
λ2

e−λ(T−t)
+

1
2λ
(T − t)+

1
λ
(T − t)e−λ(T−t)

−
3
λ3

1 − e−λ(T−t)

T − t


− (σ21σ31 + σ22σ32)

×


1
λ2

+
1
λ2

e−λ(T−t)
−

1
2λ2

e−2λ(T−t)

−
3
λ3

1 − e−λ(T−t)

T − t
+

3
4λ3

1 − e−2λ(T−t)

T − t


.

Replacing population parameters with estimates delivers the
corresponding estimated yield adjustment, which we plot in Fig. 1.
It is indeed more flexible, with an interesting hump in the fifteen-
to twenty-year maturity range, which improves the fit of those
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Table 6
Estimated correlated-factor AFNS model. The top panel contains the estimated K P

matrix and θ P vector. The bottom panel contains the estimatedΣ matrix. Standard
errors appear in parentheses. The estimated λ is 0.8244 (0.0122) for maturities
measured in years. The maximized log likelihood is 16,494.29.

K P matrix Mean

K P
·,1 K P

·,2 K P
·,3 θ P

K P
1,· 5.2740 9.0130 −10.7100 0.0794

(1.3100) (1.4200) (1.4800) (0.0084)
K P
2,· −0.2848 0.5730 −0.5528 −0.0396

(1.3200) (2.3200) (2.7600) (0.0200)
K P
3,· −37.3100 −66.7700 80.0900 −0.0279

(11.0000) (11.9000) (12.1000) (0.0193)

Σ matrix

Σ·,1 . Σ·,2 Σ·,3

Σ1,· 0.0154 0 0
(0.0004)

Σ2,· −0.0013 0.0117 0
(0.0051) (0.0018)

Σ3,· −0.1641 −0.0590 0.0001
(0.0069) (0.0106) (6.8900)

Time to maturity in years

Y
ie
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Empirical mean yields
Indep.-factor DNS mean yields
Corr.-factor DNS mean yields
Indep.-factor AFNS mean yields
Corr.-factor AFNS mean yields
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Fig. 2. Mean yield curves. We show the empirical mean yield curve, and the
independent- and correlated-factor DNS and AFNS model mean yield curves.

long-term yields in particular, although it also helps with shorter
maturities.

Another way to appreciate the role of the yield-adjustment
term is to compare the mean fitted yield curves from the
independent- and correlated-factor AFNS and DNS models to the
sample mean yield curve, which is done in Fig. 2. All of the models
match the mean yield curve well for maturities up to ten years,
but their behavior diverges for longer maturities. Note that the
DNSmodel curve ismonotonically increasing,whilewith the yield-
adjustment terms, the AFNS models can bend downward and
achieve better long-maturity fit.19

The enhanced flexibility produced by the correlated-factor
AFNS yield-adjustment term allows the level factor to become less
persistent, as evidenced by the estimated one-month conditional

19 This result suggests why the DNS model is not arbitrage free. At very long
maturities, only the level factor has any appreciable influence on bond yields. To
eliminate the arbitrage opportunity from going long on a bond with very long
maturity and hedging the risk by shorting a bond with a slightly shorter maturity,
eventually the yield curve must slope downwards (an application of Jensen’s
inequality and an illustration of convexity), which the DNS model cannot support.
mean-reversion matrix

exp


−K P 1
12


=

 0.917 −0.107 0.122
0.0390 0.981 0.0112
0.456 0.769 0.0667


. (16)

Evidently, the level factor becomes less persistent once the flexible
correlated-factor AFNS yield adjustment is incorporated, because
the level factor is more free to work with slope and curvature to
improve fit at shorter maturities, given that the yield adjustment
is most helpful at long maturities.

The one-month conditional covariance matrix is

Q AFNS
corr =

∫ 1
12

0
e−KP sΣΣ ′e−(KP )′sds

=

 7.42 × 10−6
−6.11 × 10−6

−7.62 × 10−6

−6.11 × 10−6 1.07 × 10−5 5.89 × 10−7

−7.62 × 10−6 5.89 × 10−7 1.87 × 10−4

 . (17)

The conditional variances in the diagonal are about the same for the
level and slope factors as those obtained in the correlated-factor
DNS model, but the conditional variance for curvature is much
larger. In terms of covariances, the negative correlation between
the shocks to level and slope is maintained. For the correlations
between shocks to curvature and shocks to level and slope, the
signs have changed relative to the unconstrained correlated-factor
DNS model. This suggests that the off-diagonal elements of Σ are
heavily influenced by the required shape of the yield-adjustment
term rather than the dynamics of the state variables. On the other
hand, the estimated covariances of the shocks in the DNS models
are likely to be unbiased as they are varied to provide the best fit
of the P-dynamics without any implications for the cross-sectional
fit of the model.

5. Out-of-sample predictive performance

Here we investigate whether the in-sample superiority of
the correlated-factor AFNS model carries over to out-of-sample
forecast accuracy. We first describe the recursive estimation and
prediction procedure employed. Second, we compare performance
of the four uncorrelated/correlated-factor DNS/AFNS models,
exactly as in the in-sample analysis of Section 4 except that we
work out-of-sample as opposed to in-sample. Third, we compare
the out-of-sample predictive performance of AFNS to that of the
canonical A0(3)model.

5.1. Construction of out-of-sample forecasts

We construct six- and twelve-month-ahead forecasts from
the four DNS and AFNS models for yields at various maturities.
We estimate and forecast using an expanding sample. The first
estimation sample is January 1987 toDecember 1996; then January
1987 to January 1997, and so on. The largest estimation sample
for the one-month-ahead forecasts ends in November 2002 (72
forecasts in all). For the six- and twelve-month horizons, the
largest samples end in June 2002 and December 2001 (67 and 61
forecasts), respectively.

Under quadratic loss the optimal forecast is simply the relevant
conditional expectation. The optimal DNS forecast for amaturity-τ
yield made at time t for time t + h is therefore

yDNSt+h,t(τ ) ≡ EP
t [yt+h(τ )] = EP

t [Lt+h] + EP
t [St+h]


1 − e−λτ

λτ


+ EP

t [Ct+h]


1 − e−λτ

λτ
− e−λτ


. (18)
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But from the first-order transition dynamics we have immediately

EP
t [Xt+h] =


h−1−
i=0

Ai


(I − A)µ+ AhXt , (19)

whereXt = (Lt , St , Ct). The straightforward forecasting of the state
vector (19) translates into straightforward forecasting of the yield
vector via (18).

Similarly, the optimal AFNS forecast for amaturity-τ yieldmade
at time t for time t + h is

yAFNSt+h,t(τ ) ≡ EP
t [yt+h(τ )] = EP

t [X1
t+h] + EP

t [X2
t+h]


1 − e−λτ

λτ


+ EP

t [X3
t+h]


1 − e−λτ

λτ
− e−λτ


−

A(τ )
τ
,

where

EP
0 [Xt ] = (I − exp(−K P t))θ P + exp(−K P t)X0,

and Xt = (X1
t , X

2
t , X

3
t ).

20

5.2. Evaluation of out-of-sample forecasts

Predictive accuracy has been a key metric to evaluate the
adequacy of yield curve models; recent analyses include Ang and
Piazzesi (2003), Hördahl et al. (2005), De Pooter et al. (2007),
Chua et al. (2008), Mönch (2008), and Zantedeschi et al. (2009).
Define the h-step-ahead forecast error formaturity τ as êt+h,t(τ ) =

yt+h(τ ) − ŷt+h,t(τ ). Then the forecast performances of the
four models (DNS/AFNS, independent/correlated) are compared
using the root mean squared forecast error (RMSFE) for τ =

3, 12, 36, 60, 120, 360, and h = 6, 12 (in months). These RMSFEs
are shown in Table 7. For each of the twelve combinations of yield
maturity and forecast horizon, themost accuratemodel’s RMSFE is
boxed. The results are striking. In ten of the twelve combinations,
the most accurate model is the independent-factor AFNSmodel. In
particular, the in-sample advantage of the correlated-factor AFNS
model disappears out of sample. Evidently, the correlated-factor
AFNS model is prone to in-sample overfitting due to its rich P-
dynamics.21

In examining forecast performance, we are interested in two
broad questions. First, how does the forecast performance of the
correlated-factor models compare to that of the independent-
factormodels, and second, howdoes the imposition of AF structure
affect forecast performance. Fig. 3 suggests the answers, showing
ratios of RMSFEs for various combinations of model, maturity and
forecast horizon. The first question is addressed in the left and
middle panels, which show the ratios of the independent-factor
and correlated-factor DNSmodels and the independent-factor and
correlated-factor AFNS models, respectively. The ratios are almost
uniformly below one, which supports the parsimonious models.

The second question is addressed in the right panel, which
shows RMSFE ratios of the independent-factor AFNS andDNSmod-
els. The evidence is somewhat mixed—due largely to anomalous

20 Making the formulae operational of course requires replacing population
systemparameterswith estimates.Wedenote the operational forecasts by ŷDNSt+h,t (τ )

and ŷAFNSt+h,t (τ ).
21 The two cases in which the independent-factor AFNS model is not the
most accurate pertain to the three-month yield. This disadvantage likely reflects
idiosyncratic fluctuations in short-term Treasury bill yields from institutional
factors unrelated to yields on longer-maturity Treasuries, as described by Duffee
(1996). The more flexible models appear to have a slight advantage in fitting such
idiosyncratic movements.
Table 7
Out-of-sample root mean squared forecast errors, four models. For each maturity
and horizon, the smallest RMSFE is boxed. Units are basis points.

Forecast horizon in months

Model h = 6 h = 12

Three-month yield
DNSindep 96.87 173.39
DNScorr 87.43 166.91
AFNSindep 91.63 164.70
AFNScorr 88.49 161.94

one-year yield
DNSindep 103.25 170.85
DNScorr 102.71 173.14
AFNSindep 98.49 163.46
AFNScorr 98.63 165.50

Three-year yield
DNSindep 92.22 135.24
DNScorr 99.55 145.82
AFNSindep 86.99 126.95
AFNScorr 90.64 135.79

Five-year yield
DNSindep 87.87 122.09
DNScorr 94.95 132.40
AFNSindep 82.41 112.85
AFNScorr 88.15 124.87

Ten-year yield
DNSindep 74.71 105.02
DNScorr 79.48 112.37
AFNSindep 67.48 92.39
AFNScorr 90.21 123.89

Thirty-year yield
DNSindep 71.35 96.90
DNScorr 72.71 99.68
AFNSindep 48.06 61.97
AFNScorr 71.38 96.75

behavior at the twenty-year maturity—but overall the AF ver-
sion dominates. Therefore, out-of-sample forecast performance
appears largely improved by imposing freedom from arbitrage, es-
pecially at the longer twelve-month forecast horizon.

5.3. Comparison to Duffee (2002)

An important remaining issue is the forecasting performance of
AFNS relative to the canonical AF A0(3) model. In this subsection
we address that issue, and in so doing we provide insight into the
benefits of imposing the Nelson–Siegel restrictions.

We hasten to add that, quite apart from any effects on forecast-
ing performance, imposition of the Nelson–Siegel restrictions de-
livers clear benefits simply in achieving estimation tractability. The
simple estimation of AFNS contrasts starkly with the ‘‘challenging’’
estimation of the maximally flexible A0(3) model, whose recalci-
trance is well known. Our earlier-implemented expanding-sample
AFNS estimation, for example, is infeasible for themaximally flexi-
bleA0(3)model. Hence, instead of estimating a somewhat arbitrary
A0(3)model for our data set, we take an existing optimized empir-
ical A0(3)model from the literature, specifically Duffee (2002), and
we compare it to an AFNS model estimated on the same data.

Duffee (2002) examines the predictive performance of theA0(3)
model class, estimating both the maximally flexible version (given
an essentially affine risk premium structure) and a more parsimo-
nious ‘‘preferred’’ specification on a single sample from January
1952 to December 1994.22 Fixing the parameters at estimated val-

22 The data used are available at http://econ.jhu.edu/People/Duffee/index.htm.

http://econ.jhu.edu/People/Duffee/index.htm
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Fig. 3. Out-of-sample root mean squared forecast error ratios.
Table 8
Estimated independent-factor AFNS model, Duffee (2002) data set. The top panel
contains the estimated K P matrix and θ P vector. The bottom panel contains the
estimated Σ matrix. Standard errors appear in parentheses. The estimated λ is
0.8131 (0.0183) for maturities measured in years. The maximized log likelihood is
14,948.79.

K P matrix Mean

K P
·,1 K P

·,2 K P
·,3 θ P

K P
1,· 0.0299 0 0 0.0609

(0.0249) (0.0224)
K P
2,· 0 0.7436 0 −0.0162

(0.1550) (0.0054)
K P
3,· 0 0 2.5250 −0.0043

(0.3540) (0.0026)

Σ matrix

Σ·,1 Σ·,2 Σ·,3

Σ1,· 0.0069 0 0
(0.0002)

Σ2,· 0 0.0208 0
(0.0004)

Σ3,· 0 0 0.0363
(0.0009)

ues, Duffee sequentially updates the state variables and produces
three-, six- and twelve-month-ahead yield forecasts.23

We extend Duffee’s forecast comparison to include the
independent-factor AFNS model, estimated using three-month,
six-month, one-year, two-year, five-year, and ten-year yields from
January 1952 to December 1994, as reported in Table 8.24 Fixing
parameters at estimated values, we sequentially update the state
variables using the Kalman filter. Based on the updated state
variables,weproduce six- and twelve-month-ahead yield forecasts
as above.

RMSFEs appear in Table 9 for the two models examined by
Duffee (2002) (random walk and A0(3)) plus the independent-
factor AFNS model, for the six-month, two-year and ten-year yield
maturities examined byDuffee. RMSFEs for each forecastingmodel
are based on 42 six-month-ahead forecasts from January 1995 to

23 The estimation method used by Duffee (2002) differs from ours in that he
avoids filtering by assuming that the six-month, two-year, and ten-year yields
are observed without error. Duffee therefore evaluates out-of-sample forecast
performance only at those maturities.
24 There are 21 parameters estimated in Duffee’s preferred A0(3) model and 16
parameters estimated in our AFNS model, including the six measurement error
standard deviations.
Table 9
Out-of-sample root mean squared forecast errors, three models. We show RMSFEs
for the randomwalkmodel, the preferred A0(3)model as selected and estimated by
Duffee (2002, Table 8), and the independent-factor AFNS estimated using Duffee’s
data set. For eachmaturity and horizon, the smallest RMSFE is boxed. Units are basis
points.

Forecast horizon in months

Maturity/model h = 6 h = 12

Six-month yield
Random walk 40.0 48.4
Preferred A0(3) 36.5 42.1
AFNSindep 34.0 41.3

Two-year yield
Random walk 65.2 76.2
Preferred A0(3) 56.6 60.0
AFNSindep 54.3 59.0

Ten-year yield
Random walk 66.9 81.5
Preferred A0(3) 63.6 73.8
AFNSindep 60.7 71.8

June 1998, and 36 twelve-month-ahead forecasts from January
1995 to December 1997. For each maturity/horizon combination,
the independent-factor AFNS forecasts are the most accurate,
consistently outperforming both the random walk and Duffee’s
preferred A0(3) model. This superior out-of-sample forecast
performance indicates that the AFNS class is a leading and,
not least, well-identified member of the general A0(3) class of
models.

6. Concluding remarks

Asset pricing, portfolio allocation, and risk management are
fundamental tasks in financial asset markets. For fixed income
securities, superior yield curve modeling translates into superior
pricing, portfolio returns, and risk management. Accordingly,
we have focused on two important and successful yield curve
literature: the Nelson–Siegel empirically based one and the
no-arbitrage theoretically based one. Yield curve models in
both of these traditions are impressive successes, albeit for
very different reasons. Ironically, both approaches are equally
impressive failures, and for the same reasons, swapped. That is,
models in theNelson–Siegel tradition fit and forecastwell, but they
lack theoretical rigor insofar as they admit arbitrage possibilities.
Conversely, models in the arbitrage-free tradition are theoretically
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rigorous insofar as they enforce absence of arbitrage, but they fit
and forecast poorly.

We have bridged the divide, proposing Nelson–Siegel-inspired
models that enforce absence of arbitrage. We analyzed our models
theoretically, relating them to the canonical (Dai and Singleton,
2000) representation of three-factor arbitrage-free affine models.
We also analyzed our models empirically, both in terms of in-
sample fit and out-of-sample prediction. As regards in-sample fit,
we showed that the Nelson–Siegel parameter restrictions greatly
facilitate estimation, enabling one to escape the challenging A0(3)
estimation environment in favor of the simple and robust AFNS
environment, and that the data strongly favor the correlated-factor
AFNS specification.

As regards out-of-sample prediction, we showed that the
tables are turned: the more parsimonious independent-factor
models fare better. The results also suggest that gains may
be achieved by imposing absence of arbitrage, particularly for
moderate to long yield maturities and forecast horizons, although
the evidence ismuch less conclusive than for in-sample fit. All told,
the independent-factor AFNS model fares well in out-of-sample
prediction, consistently outperforming, for example, the canonical
A0(3).

Going forward, this new AFNS structure appears likely to
be a useful representation for term structure research, as
its embedded three-factor structure (level, slope, curvature)
maintains fidelity to key aspects of term-structure data that
have been recognized at least since Litterman and Scheinkman
(1991), while simultaneously imposing absence of arbitrage. On
the theoretical side, it has recently been significantly enriched
to include nonlinear regime-switching dynamics by Zantedeschi
et al. (2009). On the applied side, it has recently been extended
in Christensen et al. (2010) to provide a joint empirical model of
nominal and real yield curves and in Christensen et al. (2009) to
model the interbank lending market.
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Appendix A. Proof of Proposition 1

Start the analysis by limiting the volatility to be constant. Then
the system of ODEs for B(t, T ) is

dB(t, T )
dt

= ρ1 + (KQ )′B(t, T ), B(T , T ) = 0.

Because

d
dt

[e(K
Q )′(T−t)B(t, T )]

= e(K
Q )′(T−t) dB(t, T )

dt
− (KQ )′e(K

Q )′(T−t)B(t, T ),
it follows from the system of ODEs that∫ T

t

d
ds


e(K

Q )′(T−s)B(s, T )

ds =

∫ T

t
e(K

Q )′(T−s)ρ1ds,

or equivalently, using the boundary conditions,

B(t, T ) = −e−(KQ )′(T−t)
∫ T

t
e(K

Q )′(T−s)ρ1ds.

Now impose the following structure on (KQ )′ and ρ1:

(KQ )′ =

0 0 0
0 λ 0
0 −λ λ


and ρ1 =

1
1
0


.

It is then easy to show that

e(K
Q )′(T−t)

=

1 0 0
0 eλ(T−t) 0
0 −λ(T − t)eλ(T−t) eλ(T−t)


and

e−(KQ )′(T−t)
=

1 0 0
0 e−λ(T−t) 0
0 λ(T − t)e−λ(T−t) e−λ(T−t)

 .
Inserting this in the ODE, we obtain

B(t, T ) = −

1 0 0
0 e−λ(T−t) 0
0 λ(T − t)e−λ(T−t) e−λ(T−t)


×

∫ T

t

1 0 0
0 eλ(T−s) 0
0 −λ(T − s)eλ(T−s) eλ(T−s)

11
0


ds

= −

1 0 0
0 e−λ(T−t) 0
0 λ(T − t)e−λ(T−t) e−λ(T−t)


×

∫ T

t

 1
eλ(T−s)

−λ(T − s)eλ(T−s)

 ds.

Because∫ T

t
ds = T − t,

and∫ T

t
eλ(T−s)ds =

[
−1
λ

eλ(T−s)
]T
t

= −
1 − eλ(T−t)

λ
,

and∫ T

t
−λ(T − s)eλ(T−s)ds =

1
λ

∫ 0

λ(T−t)
xexdx

=
1
λ

[xex]0λ(T−t) −
1
λ

∫ 0

λ(T−t)
exdx

= −(T − t)eλ(T−t)
−

1 − eλ(T−t)

λ
,

the system of ODEs can be reduced to

B(t, T ) = −

1 0 0
0 e−λ(T−t) 0
0 λ(T − t)e−λ(T−t) e−λ(T−t)



×


T − t

−
1 − eλ(T−t)

λ

−(T − t)eλ(T−t)
−

1 − eλ(T−t)

λ
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=


−(T − t)

−
1 − e−λ(T−t)

λ

(T − t)e−λ(T−t)
−

1 − e−λ(T−t)

λ

 ,
which is identical to the claim in Proposition 1.

Appendix B. The AFNS yield-adjustment term

In the AFNS models the yield-adjustment term is in general

A(t, T )
T − t

=
1
2

1
T − t

∫ T

t

3−
j=1


Σ ′B(s, T )B(s, T )′Σ


j,j ds

=
1
2

1
T − t

×

∫ T

t

3−
j=1

σ11 σ21 σ31
σ12 σ22 σ32
σ13 σ23 σ33

B1(s, T )
B2(s, T )
B3(s, T )


×

B1(s, T ) B2(s, T ) B3(s, T )


×


σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33


j,j

ds

=
A
2

1
T − t

∫ T

t
B1(s, T )2ds +

B
2

1
T − t

∫ T

t
B2(s, T )2ds

+
C
2

1
T − t

∫ T

t
B3(s, T )2ds

+D
1

T − t

∫ T

t
B1(s, T )B2(s, T )ds

+E
1

T − t

∫ T

t
B1(s, T )B3(s, T )ds

+F
1

T − t

∫ T

t
B2(s, T )B3(s, T )ds,

where

A = σ 2
11 + σ 2

12 + σ 2
13,

B = σ 2
21 + σ 2

22 + σ 2
23,

C = σ 2
31 + σ 2

32 + σ 2
33,

D = σ11σ21 + σ12σ22 + σ13σ23,

E = σ11σ31 + σ12σ32 + σ13σ33,

F = σ21σ31 + σ22σ32 + σ23σ33.

To derive the analytical formula for A(t,T )
T−t , six integrals need to be

solved:

I1 =
A
2

1
T − t

∫ T

t
B1(s, T )2ds

=
A
2

1
T − t

∫ T

t
(T − s)2ds =

A
6
(T − t)2.

I2 =
B
2

1
T − t

∫ T

t
B2(s, T )ds

=
B
2

1
T − t

∫ T

t

[
−

1 − e−λ(T−s)

λ

]2
ds

= B
[

1
2λ2

−
1
λ3

1 − e−λ(T−t)

T − t
+

1
4λ3

1 − e−2λ(T−t)

T − t

]
.

I3 =
C
2

1
T − t

∫ T

t
B3(s, T )ds

=
C
2

1
T − t

∫ T

t

[
(T − s)e−λ(T−s)

−
1 − e−λ(T−s)

λ

]2
ds

= C


1

2λ2
+

1
λ2

e−λ(T−t)
−

1
4λ
(T − t)e−2λ(T−t)

−
3

4λ2
e−2λ(T−t)

−
2
λ3

1 − e−λ(T−t)

T − t
+

5
8λ3

1 − e−2λ(T−t)

T − t


.

I4 =
D

T − t

∫ T

t
B1(s, T )B2(s, T )ds

=
D

T − t

∫ T

t
(T − s)

1 − e−λ(T−s)

λ
ds

= D
[

1
2λ
(T − t)+

1
λ2

e−λ(T−t)
−

1
λ3

1 − e−λ(T−t)

T − t

]
.

I5 = E
1

T − t

∫ T

t
B1(s, T )B3(s, T )ds

= E
1

T − t

∫ T

t
[−(T − s)]

×

[
(T − s)e−λ(T−s)

−
1 − e−λ(T−s)

λ

]
ds

= E


3
λ2

e−λ(T−t)
+

1
2λ
(T − t)

+
1
λ
(T − t)e−λ(T−t)

−
3
λ3

1 − e−λ(T−t)

T − t


.

I6 = F
1

T − t

∫ T

t
B2(s, T )B3(s, T )ds

= F
1

T − t

∫ T

t

[
−

1 − e−λ(T−s)

λ

]
×

[
(T − s)e−λ(T−s)

−
1 − e−λ(T−s)

λ

]
ds

= F


1
λ2

+
1
λ2

e−λ(T−t)
−

1
2λ2

e−2λ(T−t)

−
3
λ3

1 − e−λ(T−t)

T − t
+

3
4λ3

1 − e−2λ(T−t)

T − t


.

Combining the six integrals, the analytical formula reported in
Section 2.3 is obtained.

Appendix C. Restrictions imposed in the AFNS model

Derivation of the AFNS restrictions imposed on the canonical
representation of the A0(3) class of affine models starts with an
arbitrary affine diffusion process represented by

dYt = KQ
Y [θ

Q
Y − Yt ]dt +ΣYdW

Q
t .

Now consider the affine transformation TY : AYt + η, where A is
a nonsingular square matrix of the same dimension as Yt and η
is a vector of constants of the same dimension as Yt . Denote the
transformed process by Xt = AYt + η. By Ito’s lemma it follows
that

dXt = AdYt = [AKQ
Y θ

Q
Y − AKQ

Y Yt ]dt + AΣYdW
Q
t

= AKQ
Y A−1

[AθQY − AYt − η + η]dt + AΣYdW
Q
t

= AKQ
Y A−1

[AθQY + η − Xt ]dt + AΣYdW
Q
t

= KQ
X [θ

Q
X − Xt ]dt +ΣXdW

Q
t .
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Thus, Xt is itself an affine diffusion process with parameter
specification:

KQ
X = AKQ

Y A−1, θ
Q
X = AθQY + η, and ΣX = AΣY .

A similar result holds for the dynamics under the P-measure.
In terms of the short rate process there exists the following

relationship:

rt = δY0 + (δY1 )
′Yt = δY0 + (δY1 )

′A−1AYt

= δY0 + (δY1 )
′A−1

[AYt + η − η]

= δY0 − (δY1 )
′A−1η + (δY1 )

′A−1Xt .

Thus, defining δX0 = δY0 − (δY1 )
′A−1η and δX1 = (δY1 )

′A−1, the short
rate process is left unchanged and may be represented in either
way

rt = δY0 + (δY1 )
′Yt = δX0 + (δX1 )

′Xt .

Because both Yt and Xt are affine latent factor processes that
deliver the same distribution for the short rate process rt , they are
equivalent representations of the same fundamentalmodel; hence,
TX is called an affine invariant transformation.

In the canonical representation of the subset of A0(3) affine
term structure models considered here, the Q -dynamics aredY 1

t
dY 2

t
dY 3

t

 = −

κ
Y ,Q
11 κ

Y ,Q
12 κ

Y ,Q
13

0 κ
Y ,Q
22 κ

Y ,Q
23

0 0 κ
Y ,Q
33


Y 1

t
Y 2
t

Y 3
t

 dt

+

1 0 0
0 1 0
0 0 1

dW 1,Q
t

dW 2,Q
t

dW 3,Q
t

 ,
and the P-dynamics aredY 1

t
dY 2

t
dY 3

t

 =

κ
Y ,P
11 κ

Y ,P
12 κ

Y ,P
13

κ
Y ,P
21 κ

Y ,P
22 κ

Y ,P
23

κ
Y ,P
31 κ

Y ,P
32 κ

Y ,P
33



θ

Y ,P
1

θ
Y ,P
2

θ
Y ,P
3

−

Y 1
t

Y 2
t

Y 3
t


 dt

+

1 0 0
0 1 0
0 0 1

dW 1,P
t

dW 2,P
t

dW 3,P
t

 .
Finally, the instantaneous risk-free rate is

rt = δY0 + δY1,1Y
1
t + δY1,2Y

2
t + δY1,3Y

3
t .

There are 22 parameters in this maximally flexible canonical
representation of the A3(0) class of models, and here we present
the parameter restrictions needed to arrive at the affine AFNS
models.
(1) The AFNS model with independent factors

The independent-factor AFNS model has P-dynamicsdX1
t

dX2
t

dX3
t

 =

κX,P
11 0 0
0 κ

X,P
22 0

0 0 κ
X,P
33



θ

X,P
1

θ
X,P
2

θ
X,P
3

−

X1
t

X2
t

X3
t


 dt

+

σ X
11 0 0
0 σ X

22 0
0 0 σ X

33

dW 1,P
t

dW 2,P
t

dW 3,P
t

 ,
and the Q -dynamics are given by Proposition 1 asdX1

t
dX2

t
dX3

t

 = −

0 0 0
0 λ −λ
0 0 λ

X1
t

X2
t

X3
t

 dt

+

σ X
11 0 0
0 σ X

22 0
0 0 σ X

33

dW 1,Q
t

dW 2,Q
t

dW 3,Q
t

 .
Finally, the short rate process is rt = X1
t + X2

t . This model has a
total of ten parameters; thus, twelve parameter restrictions need
to be imposed on the canonical A0(3)model.

It is easy to verify that the affine invariant transformation
TA(Yt) = AYt + η with

A =

σ
X
11 0 0
0 σ X

22 0
0 0 σ X

33

 η =

0
0
0



will convert the canonical representation into the independent-
factor AFNS model. For the mean-reversion matrices, the relation-
ship between the two representations is
K P
X = AK P

Y A
−1

⇐⇒ K P
Y = A−1K P

X A,

KQ
X = AKQ

Y A−1
⇐⇒ KQ

Y = A−1KQ
X A.

The equivalent mean-reversion matrix under the Q -measure is
then

KQ
Y =


1
σ X
11

0 0

0
1
σ X
22

0

0 0
1
σ X
33


0 0 0
0 λ −λ
0 0 λ

σ X
11 0 0
0 σ X

22 0
0 0 σ X

33



=


0 0 0

0 λ −λ
σ X
33

σ X
22

0 0 λ

 .
Thus, four restrictions need to be imposed on the upper triangular
mean-reversion matrix KQ

Y :

K Y ,Q
11 = 0, K Y ,Q

12 = 0, K Y ,Q
13 = 0 and K Y ,Q

33 = K Y ,Q
22 .

Furthermore, notice that K Y ,Q
23 will always have the opposite sign of

K Y ,Q
22 andK Y ,Q

33 , but its absolute size can vary independently of these
two parameters. Because K P

X , A, and A−1 are all diagonal matrices,
K P
Y is a diagonal matrix, too. This gives another six restrictions.
Finally, we can study the factor loadings in the affine function

for the short rate process. In all AFNS models, rt = X1
t + X2

t , which
is equivalent to fixing

δX0 = 0, δX1 =

1
1
0


.

From the relation (δX1 )
′
= (δY1 )

′A−1 it follows that

(δY1 )
′
= (δX1 )

′A =

1 1 0

σ X
11 0 0
0 σ X

22 0
0 0 σ X

33


=

σ X
11 σ X

22 0

.

For the constant term it holds that
δX0 = δY0 − (δY1 )

′A−1η ⇐⇒ δY0 = δX0 = 0.
Thus, we have obtained two additional parameter restrictions
δY0 = 0 and δY1,3 = 0.
(2) The AFNS model with correlated factors

In the correlated-factor AFNS model, the P-dynamics aredX1
t

dX2
t

dX3
t

 =

κ
X,P
11 κ

X,P
12 κ

X,P
13

κ
X,P
21 κ

X,P
22 κ

X,P
23

κ
X,P
31 κ

X,P
32 κ

X,P
33



θ

X,P
1

θ
X,P
2

θ
X,P
3

−

X1
t

X2
t

X3
t


 dt

+

σ X
11 σ X

12 σ X
13

0 σ X
22 σ X

23
0 0 σ X

33

dW 1,P
t

dW 2,P
t

dW 3,P
t

 ,
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and the Q -dynamics are given by Proposition 1 asdX1
t

dX2
t

dX3
t

 = −

0 0 0
0 λ −λ
0 0 λ

X1
t

X2
t

X3
t

 dt

+

σ X
11 σ X

12 σ X
13

0 σ X
22 σ X

23
0 0 σ X

33

dW 1,Q
t

dW 2,Q
t

dW 3,Q
t

 .
This model has a total of 19 parameters; thus, three parameter
restrictions are needed.

It is easy to verify that the affine invariant transformation
TA(Yt) = AYt + η with

A =

σ
X
11 σ X

12 σ X
13

0 σ X
22 σ X

23

0 0 σ X
33

 and η =

0
0
0



will convert the canonical representation into the correlated-factor
AFNS model. For the mean-reversion matrices, the relationships
between the two representations are

K P
X = AK P

Y A
−1

⇐⇒ K P
Y = A−1K P

X A,

KQ
X = AKQ

Y A−1
⇐⇒ KQ

Y = A−1KQ
X A.

The equivalent mean-reversion matrix under the Q -measure is
then

KQ
Y =



1
σ X
11

−
σ X
12

σ X
11σ

X
22

−


σ X
13

σ X
11σ

X
33

−
σ X
12σ

X
23

σ X
11σ

X
22σ

X
33


0

1
σ X
22

−
σ X
23

σ X
22σ

X
33

0 0
1
σ X
33



×

0 0 0
0 λ −λ
0 0 λ

σ
X
11 σ X

12 σ X
13

0 σ X
22 σ X

23

0 0 σ X
33



=


0 −λ

σ X
12

σ X
11

λ
σ X
12σ

X
33 − σ X

22σ
X
13

σ X
11σ

X
22

0 λ −λ
σ X
33

σ X
22

0 0 λ

 .
Thus, two restrictions need to be imposed on the upper triangular
mean-reversion matrix KQ

Y :

K Y ,Q
11 = 0, K Y ,Q

33 = K Y ,Q
22 .

Furthermore, notice that K Y ,Q
23 will always have the opposite sign

of K Y ,Q
22 and K Y ,Q

33 , but its absolute size can vary independently of
the two other parameters.

Next we study the factor loadings in the affine function for the
short rate process. In the AFNS models, rt = X1

t + X2
t , which is

equivalent to fixing

δX0 = 0, δX1 =

1
1
0


.

From the relation (δX1 )
′
= (δY1 )

′A−1, it follows that

(δY1 )
′
= (δX1 )

′A =

1 1 0

σ X
11 σ X

12 σ X
13

0 σ X
22 σ X

23
0 0 σ X

33


=

σ X
11 σ X

21 + σ X
22 σ X

13 + σ X
23


.

This shows that there are no restrictions on δY1 . For the constant
term, we have

δX0 = δY0 − (δY1 )
′A−1η ⇐⇒ δY0 = δX0 = 0.

Thus, we have obtained one additional parameter restriction,

δY0 = 0.

Finally, for the mean-reversion matrix under the P-measure, we
have

K P
X = AK P

Y A
−1

⇐⇒ K P
Y = A−1K P

X A.

Because K P
X is a free 3×3matrix, K P

Y is also a free 3×3matrix. Thus,
no restrictions are imposed on the P-dynamics in the equivalent
canonical representation of this model.
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