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The study compares the predictive ability of various models in estimating intraday Value-at-Risk (VaR) and Ex-
pected Shortfall (ES) using high frequency share price index data from sixteen different countries across the
world for a period of seven and half months from September 20, 2013 to May 07, 2014. The main emphasis of
the study has been given to Extreme Value Theory (EVT) and to evaluate how well Conditional EVT model per-
forms inmodeling tails of distributions and in estimating and forecasting intradayVaR and ESmeasures.We have
followedMcNeil and Frey's (2000) two stage approach called Conditional EVT to estimate dynamic intraday VaR
and ES. We have compared the accuracy of Conditional EVT approach to intraday VaR and ES estimation with
other competing models. The best performing model is found to be the Conditional EVT in estimating both the
quantiles for the entire sample. The study is useful for market participants (such as intraday traders and market
makers) involved in frequent intraday trading in such equity markets.
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1. Introduction

Oneof themost interestingdevelopments in empiricalfinance is givenby
the availability of tick-by-tick data from a variety of liquid financial markets.
This development of high frequency data bases allows researchers to investi-
gate awide range of issues in thefinancialmarkets. One such important issue
is intraday risk management which is connected with the use of high fre-
quency data. For active market participants such as high frequency traders,
day traders or market makers, trading risk should be evaluated on shorter-
than-daily intervals since the horizon of their investments is generally less
than a day. For example, day traders liquidate any open positions at closing,
inorder topreemptanyadverseovernightmoves resulting in largegapopen-
ings. Brokers must also be able to calculate trading limits as fast as clients
place theirorders. Significant intradayvariations inassetpricesaffect themar-
gins a client has to deposit with a clearing firm, and this should be taken into
considerationwhile designing an appropriatemodel to estimate themargins.
Sometimes banks also use intraday risk analysis for internal control of their
trading desk.

Value-at-risk (VaR) has become a widely used tool in risk manage-
ment of financial institutions and regulators. A VaR model measures
market risk by determining how much the value of a portfolio could
91 522 6696624 (office).
m13005@iiml.ac.in (S. Paul).
decline with α% probability over a certain time horizon τ as a result of
changes in market prices or rates. Another useful measure of risk is
the expected shortfall (ES) which is defined as the expected size of
a loss that exceeds VaR. Where VaR addresses the question: “How
bad can things get?”, the ES addresses the question: “If things go
bad, what is the expected loss?” Much effort has been spent on de-
veloping increasingly sophisticated risk models of VaR type for
daily data and/or longer horizon,2 but the issue of intraday market
risk measurement has been less explored. With increased access to
intraday financial data bases and advanced computing power, it
has now become possible to address the question of how to define
practical risk measures for investors or market makers operating
on an intraday basis. This paper examines market risk at very short
time horizon with intraday VaR and ES, using high frequency data
of various stock markets across the globe.

Themost commonly used VaR and ES models assume that the prob-
ability distribution of the daily/intraday financial asset return is normal,
an assumption that is far from reality. Many of the asset returns exhibit
significant amounts of excess kurtosis. This means that the probability
distributions of these returns have “fat tails” so that extreme outcomes
2 This is motivated by the fact that financial institutions generally produce their market
VaR at the end of the business day to measure their total risk exposure over the next day.
For regulated capital adequacy purposes, banks usually compute themarket VaR daily and
then re-scale it to a 10-day horizon.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.irfa.2015.11.008&domain=pdf
http://dx.doi.org/10.1016/j.irfa.2015.11.008
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3 See Coles (2001) and Beirlant et al. (2004) for detailed treatments of EVT.

35M. Karmakar, S. Paul / International Review of Financial Analysis 44 (2016) 34–55
happenmuchmore frequently than thatwould be predicted by the nor-
mal distribution assumption. In this article, we show how the normal
distribution assumption can be relaxed. We propose an extreme value
approach popularly known as extreme value theory (EVT) to calculate
intraday VaR and ES that allows the user to choose more generalized
fat tailed distributions for the high frequency stock market returns.

Classical EVT typically relies on an important assumption of independent
and identicallydistributed(iid)observations,whichobviouslydoesnotmatch
the actual situation of financial return series. In order to overcome the
drawbacks the immediate solution is provided by McNeil and Frey (2000).
Using a two stage approach, McNeil and Frey estimate a GARCH model in
stage onewith a view tofiltering the return series to obtain (nearly) iid resid-
uals. In stage two, theEVT framework is applied to the standardized residuals.
The advantage of this GARCH–EVT combination lies in its ability to cap-
ture conditional heteroscedasticity in the data through the GARCH
framework, while at the same time modeling the extreme tail behavior
through the EVT method.

Following McNeil and Frey (2000), many researchers use
GARCH–EVT approach along with other traditional models on differ-
ent data sets and find that this approach performs better than other
competing models for VaR estimations. Bali and Neftci (2003) apply
the GARCH–EVT model to U.S. short-term interest rates and show
that the model yields more accurate estimates of VaR than that ob-
tained from a Student t-distributed GARCH model. Bystrom (2004)
and Fernandez (2005) also find that the GARCH–EVT model per-
forms better than the parametric models in forecasting VaR for vari-
ous international stock markets. In an energy application, Bystrom
(2005) employs GARCH–EVT framework to Nord Pool returns and
observes that the model produces more accurate estimates as well
as forecasts of extreme quantiles than a pure GARCH model. Recent-
ly, Cotter (2007); Ghorbel and Trabelsi (2008); Marimoutou, Raggad,
and Trabelsi (2009) etc., use GARCH–EVT model to measure VaR in
different markets and find that the model predicts better estimates
of VaR than that of other well-known modeling techniques. Very
recently, Karmakar and Shukla (2015) have compared the accuracy
of GARCH–EVT approach for VaR calculation with other competing
models using data from six emerging as well as developed stockmar-
kets of the world. They also observe that the GARCH–EVT approach
performs the best in estimating VaR.

In all these papers the GARCH–EVT model was applied on daily
data to forecast daily VaR. Intraday VaR was initially discussed by
Giot (2005) and the study was followed by a growing number of
research papers focusing on intraday VaR with the increasing avail-
ability of high frequency financial databases. However, while there
exists a number of studies on intraday VaRmeasures using tradition-
al GARCH-based models (Beck, Kim, Rachev, Feindt, & Fabozzi, 2013;
Colletaz, Hurlin, & Tokpavi, 2007; Dionne, Duchesne, & Pacurar,
2009; Mike, So, & Xu, 2013; Morimoto & Kawasaki, 2008; Qi & Lon
Ng, 2009 among others), to the best of our knowledge, a limited
work has been done on forecasting intraday VaR based on sophisti-
cated GARCH–EVT model. Very recently some researchers have con-
centrated to estimate GARCH–EVT based intraday VaR on high
frequency data. Ergun and Jun (2010) estimate several GARCH and
EVT based models to forecast intraday VaR for S&P 500 stock index
futures returns. They find that the EVT based model and the GARCH
based models which take conditional skewness and kurtosis into ac-
count provide accurate VaR forecast. Chavez-Demoulin and McGill
(2012) measures intraday VaR using EVT–Hawkes process. They ob-
serve that the process provides a suitable estimate of risk measures
at high quantile for financial time series in the US market.

While there are voluminous studies on VaR forecasting based
on GARCH as well as sophisticated EVT models, the literature on ES
forecasting is limited to a few studies which use mainly traditional
GARCH typemodels. Embrechts, Kaufmann, and Patie (2005) test differ-
ent traditional models on daily data taken from different markets by
performing backtesting on ES prediction. Watanabe (2012) applies
realized GARCH model to forecast ES along with VaR using daily return
of S&P 500 stock index.

In this paperwe compute intraday VaR and ES for sixteen stockmar-
kets across Asia, Europe, North America, Latin America, Africa and
Australia. For robustness purposes, we have used sixteen different
stock indices, to avoid results dependent on a specific financial market.
In this respect the present paper differs from earlier studies which
have measured EVT based intraday VaR using high frequency data of
US market only.

A plethora of models used for forecasting VaR and ES are examined.
However, the primary focus of this paper is to compare the accuracy of
GARCH–EVT approach for intraday VaR and ES calculationwith other com-
peting approaches. We have followed McNeil and Frey's (2000) two stage
approach and demonstrated in detail how the approach combines the sim-
ple EVT approach with the appropriate GARCH model to accommodate
both conditional volatility and fat tailed return distribution to estimate the
tail related risk measures in different stock markets across the world.

Although both the negative and the positive tails of stock return dis-
tributions are interesting from a risk management perspective, most
studies of extreme stock returns focus on losses (as opposed to gains),
and large crashes are generally considered more important than large
booms. In this paper, we look at sixteen countries' aggregate stock
markets and we expect losses to be of more general interest than
gains. To save space, we therefore chose to focus solely on the negative
tails of the distribution of the sixteen return series.

The remainder of the paper is structured as follows. Section 2
presents a brief overview of EVT, describes the estimation of VaR and
ES, and then explains McNeil and Frey's (2000) two stage approach
called Conditional EVT to estimate dynamic intraday VaR and ES.
Section 3 focuses on the data used in the study. Section 4 presents the
empirical findings from both in-sample and out-of sample evaluations
of intraday VaR and ESmeasures. Finally, Section 5 concludes the study.

2. Modeling the tails of stock return distributions

In the following subsections, we present a brief overview of the the-
oretical framework of EVT, describe VaR and ES and explain how condi-
tional EVT is applied to VaR and ES.

2.1. Extreme value theory

Extreme value theory provides the fundamentals for the statistical
modeling of rare (extreme) events, and is used to compute tail related
measures. The extreme values can be modeled by the block maxima
or the peak over threshold (POT).3 The first approach defines extreme
events as the maximum (minimum) value in each sub-period. There-
fore, it tends to abandon a great deal of data. The second approach con-
siders the sort of clustering phenomena frequently found in financial
data. Hence, wewould use here the second approach which is more ap-
propriate for the current study.

We would consider here a sequence of n iid random variables X
(x1,x2, . . . .xn) that represents the residuals of the intraday return series.
The excess distribution F(x), which is the probability that X exceeds a fixed
threshold u, can be estimated using a generalized Parato distribution (GPD)
fitted by the maximum likelihood method. The tail estimator is as follows:

F xð Þ ¼ 1−
k
n

1þ ξ
x−uð Þ
ψ

� �−1
ξ

; for XNu; ð1Þ

where ξ is the shape parameter, and ψ is the scale parameter, n is the total
number of observations, and k is the number of observations above the
threshold u. For a given probability, q N F(u), the tail quantile can be obtained
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by inverting the tail estimation formula above to get (see Embrechts,
Kluppelberg, &Mikosh, 1997)

xq ¼ uþ ψ
ξ

1−q
k=n

� �−ξ

−1

" #
ð2Þ

2.2. Estimation of VaR and ES

As referred in the introduction, two important measures of market
risk are the VaR, and the ES which are mathematically defined as fol-
lows: Suppose a random variable X with continuous distribution func-
tion F models the return distribution of a risky financial portfolio over
the specified time horizon. For a given probability q, VaR can be defined
as the qth quantile of the distribution F

VaRq ¼ F−1 1−qð Þ ð3Þ

where F−1 is the so-called quantile function defined as the inverse of the
distribution function F. As VaR is exactly the same extreme quantile de-
fined earlier by Eq. (2), it can be estimated by

VâRq ¼ xq ¼ uþ ψ
ξ

1−q
k=n

� �−ξ

−1

" #
ð4Þ

The ES for risk X at given probability level q is formally defined as

ESq ¼ E XjX N VaRq
� � ð5Þ

The ES is estimated by the following equation

ESq ¼ VaRq

1−ξ
þ ψ−ξu

1−ξ
ð6Þ

2.3. Conditional EVT applied to VaR and ES

So farwehave described theUnconditional EVT approach that focus-
es directly on the tail but does not acknowledge the fact that financial
asset returns are non-iid. McNeil and Frey (2000) recognize that most
financial return series exhibit stochastic volatility and fat-tailed distri-
butions. While the fat tails might be modeled directly with EVT, the
lack of iid returns is problematic. One approach to this problem is pro-
vided by McNeil and Frey. Using a two-stage approach they estimate
the conditional volatility using a GARCH model in stage one. The
GARCH model serves to filter the return series such that GARCH resid-
uals are closer to iid than the raw return series. Even so, GARCH resid-
uals have been shown to exhibit fat tails. In stage two, they apply EVT
to the GARCH residuals. As such, the GARCH–EVT combination accom-
modates both time-varying volatility and fat-tailed return distributions.
In this paper, we follow McNeil and Frey (2000) in combining the ex-
treme value approach with appropriate GARCH specification. This ap-
proach is denoted as Conditional EVT.

We assume that the dynamics of conditional mean returns can be
represented by the following ARMA (p1 ,q1) model

rt ¼ a0 þ
Xp1
i¼1

airt−i þ
Xq1
j¼1

bjεt− j þ εt ¼ μ t þ
ffiffiffiffiffi
ht

p
Zt ð7Þ

where μt ¼ a0 þ∑
p1

i¼1
airt−i þ∑

q1

j¼1
bjεt− j, ai and bj are parameters, rt− i are

lagged returns, εt is residual which follows Student-t distribution with
mean = 0, and variance = ht, Zt is the standardized residual which is

defined by εt=
ffiffiffiffiffi
ht

p
and ht is conditional variance of εt. We also assume

that the conditional variance ht follows any one of the GARCH (p2,q2)
processes including symmetric as well as asymmetric ones such as
GARCH, EGARCH, TGARCH and APARCH which are briefly explained
below:

Bollerslev (1986) proposes a generalized autoregressive conditional
heteroskedasticity, GARCH (p2,q2) model:

ht ¼ ω þ
Xp2
i¼1

αi ε2t−i þ
Xq2
j¼1

β jht− j ð8Þ

Nelson (1991) proposes the following Exponential GARCH (EGARCH)
model to allow for leverage effects:

log ht ¼ ω þ
Xp2
i¼1

αi
jεt−ij þ γi εt−iffiffiffiffiffiffiffiffiffi

ht−i

p þ
Xq2
j¼1

β j log ht− j ð9Þ

Another GARCH model that is capable of modeling asymmetric
effects is the Threshold GARCH (TGARCH) model or also known as
the GJR model (Glosten, Jagannathan, & Runkle, 1993), which has the
following forms:

ht ¼ ω þ
Xp2
i¼1

ðαi þ γiDt−iÞε2t−i þ
Xq2
j¼1

β jht− j ð10Þ

Ding, Granger, and Engle (1993) propose the asymmetric power
ARCH (APARCH) model where the power parameter δon the standard
deviation is estimated rather than imposed:

σδ
t ¼ ω þ

Xp2
i¼1

αi jεt−ij−γi εt−ið Þδ þ
Xq2
j¼1

β jσ
δ
t− j ð11Þ

The above mentioned GARCH models would be fitted here with
Student-t distribution instead of normal distribution. This is because
empirical evidence strongly rejects the idea that financial returns are
normally distributed. In fact, it is well established that the stock returns
are fat-tailed. Hence we use the fat-tailed density, e.g., Student-t with
GARCH in order to better account for heavy-tailedness.

Standardized residuals or innovations can be computed after maxi-
mizing log-likelihood function of Student-t distribution with respect
to the unknown parameters:

Zt ¼ rt−μtffiffiffiffiffi
ht

p ð12Þ

If the standardized residuals are iid and the fitted model is well-
specified, we end stage 1 by estimating the conditional mean (μt+1)
and variance (ht+1) for interval t + 1 by using standard 1-step ahead
forecasts.

The 1-step ahead conditional mean forecast is given by

μ̂ tþ1 ¼ â0 þ
Xp1
i¼1

âirt−iþ1 þ
Xq1
j¼1

b̂ jεt− jþ1 ð13Þ

and the 1-step ahead conditional variance forecast is given by Eqs. (14),
(15), (16), and (17) for GARCH (p2,q2), EGARCH (p2,q2), TGARCH (p2,q2)
and APARCH (p2,q2) models, respectively.

ĥtþ1 ¼ ω̂ þ
Xp2
i¼1

α̂i ε2t−iþ1 þ
Xq2
j¼1

β̂ j ĥt− jþ1� ð14Þ

ĥtþ1 ¼ exp ω̂ þ
Xp2
i¼1

α̂i
jεt−iþ1j þ γ̂iþ1εt−iþ1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ĥt−iþ1

q þ
Xq2
j¼1

β̂ j log ĥt− jþ1

2
64

3
75 ð15Þ



Table 1
Name of countries and the corresponding indices along with other relevant information.

Country Name of indices Short forms of
indices

Trading period (local time) during
which price points are available

Obs./day No. of
days

Total
obs.

India S&P CNX Nifty Index Nifty 9:10 h–15:30 h 76 152 11,552
Japan Nikkei 225 Index Nikkei 9:00 h–11:30 h;

12:30 h–15:05 h
61 150 9150

Taiwan TSEC weighted index TWSE 9:00 h–13:25 h 53 152 8056
Korea Korea Stock Exchange KOSPI Index KOSPI 9:00 h–15:00 h 70 151 10,570
Hong Kong Hang Seng Index HSI 9:20 h–12:00 h;

13:00 h–16:00 h
68 148 10,064

Philippines Philippines Stock Exchange PSEi Index Pcomp 9:30 h–12:00 h
13:30 h–15:15 h

51 150 7650

Singapore Singapore Stock Market Index STI 9:00 h–17:00 h 96 155 14,880
UK FTSE 100 Index FTSE 8:00 h–16:30 h 102 156 15,912
Germany Deutsche Boerse AG German Stock Index DAX 9:00 h–17:30 h 102 155 15,810
Turkey XU100 Index XU100 9:30 h–12:30 h

14:00 h–17:30 h
78 152 11,856

US S&P 500 Index SPX 9:30 h–16:00 h 78 155 12,090
Mexico Mexican Bolsa IPC Index Mexbol 8:30 h–14:55 h 77 151 11,627
Brazil Ibovespa Brasil Sao Paulo Stock Exchange Index Ibov 10:00 h–17:05 h 85 151 12,835
Argentina Buenos Aires Stock Exchange Index Merval 11:00 h–16:55 h 71 148 10,508
S Africa Johanesburg Stock Exchange Index Jalsh 9:00 h–16:55 h 95 151 14,345
Australia ASX 200 Index ASX 10:00 h–16:05 h 73 155 11,315

Note: The last three columns of Table 1 respectively, show number of sample observations in the return series per day, number of trading days and total number of sample observations
finally after removing certain figures from the raw price set for each country. Let us see howwe have arrived at the final number of observations for India. Consistent with the literature,
overnight return is excluded. Again consistent with the literature, dayswhich do not have 76 five-minute intervals are also excluded, which finally leaves uswith rt.,v t=1,..., 152, v=1,...,
76, for a total of 11, 552 observations for India. Following the same procedurewe have got the final numbers of sample observations in the return series for the rest of the other countries.

4 Andersen and Bollerslev (1998) explore the effective use of time series data with dif-
ferent frequencies in constructing accurate ex-post volatilitymeasurements. They observe
the leastmeasurement error in case of 5-min frequencydata andhence suggest that 5-min
frequency data is the best way to avoid microstructure noise.
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ĥtþ1 ¼ ω̂ þ
Xp2
i¼1

ðα̂i þ γ̂iDt−iþ1Þε2t−iþ1 þ
Xq2
j¼1

β̂ jĥt− jþ1 ð16Þ

σ̂ δ
tþ1 ¼ ω̂ þ

Xp2
i¼1

α̂i jεt−iþ1j−γ̂i εt−iþ1ð Þδ þ
Xq2
j¼1

β̂ jσ̂
δ
t− jþ1 ð17Þ

In stage 2 we apply the EVT tools kit to the standardized residuals
(Zt) and estimate the VâRq and ESq quantiles defined by Eqs. (4) and
(6), respectively. An estimate of the Conditional VaR is

VaRtþ1
q ¼ μ̂ tþ1 þ

ffiffiffiffiffiffiffiffiffiffi
ĥtþ1

q
VâRq ð18Þ

And an estimate of the Conditional ES is

EStþ1
q ¼ μ̂tþ1 þ

ffiffiffiffiffiffiffiffiffi
ĥtþ1

q
ESq ð19Þ

where μ̂ tþ1 is given by Eq. (13) and ĥtþ1 is given by Eqs. ((14) or (15) or
(16) or (17), whichever is appropriate).

3. Data, properties and the stylized facts

The data set used in this study includes sixteen high frequency stock
price indices across Asia, Europe, the US, Latin America, Africa and
Australia. The sixteen indices have been taken from sixteen countries,
one each from every country. The names of the countries and their cor-
responding indices along with short forms are reported in first three
columns of Table 1. The price index data have been extracted from
Bloomberg for a period of seven and half months from September 20,
2013 to May 07, 2014 at 5 min interval. It is noted that stock trading
hours vary from country to country and the specific trading periods dur-
ingwhich the price records are available are reported for different coun-
tries in column 4 of Table 1.

As high-frequency data carry more information, using data with the
highest possible frequency theoretically optimizes the accuracy of the
intraday VaR estimation. However, many researchers have expressed
concerns over the adverse effect of microstructure noise of the market
on the high frequency estimator (e.g., Andersen & Bollerslev, 1998;
Andersen, Bollerslev, Diebold, & Labys, 1999; Alizadeh, Brandt, &
Diebold, 2002; Bandi & Rusell, 2005; Zhang, Mykland, & Ait-Sahalia,
2005). Andersen and Bollerslev (1998) choose 5 min frequency and
suggest that the 5min frequency is the bestway to avoidmicrostructure
error of the market.4 So we choose the 5-min frequency data of each of
the sixteen indices. For each series we obtain 5 min continuously
compounded returns (rt,v) for each interval v on day t and the return
is calculated as the logarithmic difference of prices, i.e., rt ,v= log(Pt ,v/
Pt ,v−1), where Pt,v is the closing price for interval v on day t and Pt,v-1
is the opening price for interval v on day t. The last three columns of
Table 1 respectively, show number of sample observations in the return
series per day, number of trading days and total number of sample ob-
servations finally after removing certain figures from the raw price set
for each country. Let us see how we have arrived at the final number
of observations for India. Consistent with the literature, overnight re-
turn is excluded. Again consistent with the literature, days which do
not have 76 five-minute intervals are also excluded, whichfinally leaves
us with rt.,v, t= 1,..., 152, n = 1,..., 76, for a total of 11,552 observations
for India. Following the same procedure we have got the final numbers
of sample observations in the return series for the rest of the other
countries.

Table 2 presents the summary statistics of the distribution of returns
for each series. The estimated results suggest that the characteristics of
5 min equity returns can be consistent with the stylized properties of
high frequency financial time series returns documented in the litera-
ture. For example, the mean values of the series are all approximately
zero, as is the case for the returns of other financial assets. The sample
skewness in most of the countries, is negative which suggests that the
negative shocks aremore frequent than the positive ones. The skewness
is positive only for Japan, Singapore, Mexico and Argentina. The excess-
kurtosis estimate is very high in majority of the countries and there is a
wide variation in the estimateswith the highest value of 65.249 in South
Africa and the lowest value of 4.709 in Singapore. The average excess-
kurtosis is very high (18.25) which means that return distributions
are leptokurtic, with much heavier tails than the normal distribution.



Table 2
Descriptive statistics of original returns (full sample from September 20, 2013 to May 07, 2014).

Total obs. Mean Std. Dev. Skewness Kurtosis Jarque–Bera Q (16) Q2 (16)

India 11,552 −0.000 0.001 −0.739 17.291 99,359.97 (0.000) 15.197 (0.510) 808.030 (0.000)
Japan 9150 −0.000 0.001 0.084 9.419 15,719.44 (0.000) 25.568 (0.060) 119.260 (0.000)
Taiwan 8056 −0.000 0.001 −0.025 8.235 9200.24 (0.000) 37.648 (0.002) 374.520 (0.000)
Korea 10,570 −0.000 0.001 −0.258 8.505 13,465.89 (0.000) 13.924 (0.604) 757.840 (0.000)
Hong Kong 10,064 −0.000 0.001 −1.036 20.507 130,321.20 (0.000) 40.948 (0.001) 153.250 (0.000)
Philippines 7650 −0.000 0.001 −1.730 34.042 310,962.20 (0.000) 514.780 (0.000) 137.770 (0.000)
Singapore 14,880 −0.000 0.000 0.014 4.709 1812.19 (0.000) 401.500 (0.000) 929.860 (0.000)
UK 15,912 0.000 0.001 −0.399 13.899 79,184.01 (0.000) 25.339 (0.064) 961.100 (0.000)
Germany 15,810 0.000 0.001 −0.322 11.409 46,848.90 (0.000) 42.470 (0.000) 1249.500 (0.000)
Turkey 11,856 −0.000 0.001 −1.094 27.721 304,255.40 (0.000) 50.274 (0.000) 906.821 (0.000)
US 12,090 0.000 0.001 −0.115 7.046 8274.72 (0.000) 18.239 (0.310) 2394.100 (0.000)
Mexico 11,627 0.000 0.001 0.291 9.929 23,424.37 (0.000) 87.929 (0.000) 916.930 (0.000)
Brazil 12,835 −0.000 0.001 −0.143 7.455 10,658.21 (0.000) 28.244 (0.030) 506.410 (0.000)
Argentina 10,508 −0.000 0.001 0.575 24.054 194,665.40 (0.000) 658.720 (0.000) 422.200 (0.000)
S Africa 14,345 0.000 0.001 −0.936 65.249 2,318,191.00 (0.000) 23.953 (0.091) 8.090 (0.946)
Australia 11,315 −0.000 0.001 −0.558 22.710 183,730.59 (0.000) 30.905 (0.014) 52.522 (0.000)

Note: The table reports summary statistics for the 5-min interval stockmarket returns (rt) of the sixteen countries. The p values are given in the parentheseswhich indicate that the Ljung–
Box Q and Q2 statistics are significant at better than 1% levels except Q(16) for India, Japan, South Korea, UK, US, and South Africa and Q2(16) for South Africa.

5 The other competing models include Unconditional EVT, Static Normal, Conditional
Normal, and RiskMetrics. The Unconditional EVT has already been discussed in the text
and the rest of the three models are well known and are explained in different studies
(See Gencay & Selcuk, 2004; Karmakar & Shukla, 2015).
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The non-normality of the distribution is also confirmed by the high
Jarque–Bera statistics. On the basis of Ljung–Box Q statistic, the hypoth-
esis that all correlation coefficients up to 16 are jointly zero is rejected
for all countries. Therefore, we can conclude that return series in each
country present some linear dependence in returns. In addition, the sta-
tistically significant serial correlations in squared returns [Q2 (16)]
imply that there are non-linear dependences in all return series. This
indicates volatility clustering which is clearly observed in each return
series plotted in Fig. 1. Together with Table 2, Fig. 1 demonstrates the
defining characteristics of high frequency stock returns of sixteen coun-
tries: occasional extrememovements, volatility clustering and fat-tailed
distributions.

Another stylized property of high-frequency returns, which needs a
specialmention and has been documented inmany studies, is thatmost
intraday equity return volatilities exhibit strong periodicity (see
Andersen & Bollerslev, 1997; Aradhyula & Ergun, 2004: Bollerslev &
Ghysels, 1996; Goodhart & O'Hara, 1997; Martens, Chang, & Taylor,
2002). Volatility is typically higher at the opening and towards the
close of trade and lower during midday. To investigate the periodicity
of the intraday volatility, we have estimated ACF of the absolute returns
for each return series and plotted the same in Fig. 2. The apparent
U-shaped periodicity recurs every day for almost all the series. Consider
the case for India where there are 76 observations per day for the 5min
return series. The U-shaped pattern can be observed in India at every 76
lags, which strongly indicates periodicity with a period of one day. The
autocorrelation is highest at the beginning and end of one day interval,
and lowest in the middle. For other countries too, the same pattern can
be observed at every vi lags where vi is the number of observations per
day of the ith country, indicating periodicity with a period of one day.
The periodicity of the intraday volatility observed in the present study
is consistent with the findings of various other studies cited earlier.
The evidence of this intraday periodicity reflects the behavior of traders
who are very active at the beginning of the trading session and adjust
their positions to incorporate the overnight change in information. To-
wards the end of the day, traders are changing their positions in antici-
pation of the close and to pre-empt the risk posed by any information
that could arrive during the night.

In summary, the 5min returns series used in this study have proper-
ties that are consistentwith the stylized facts of high frequency financial
returns reported in the literature. They are all fat-tailed, slightly skewed
and have a zero mean. Furthermore, there are linear dependence in
returns and the series exhibit volatility clustering. Most importantly,
the series displays strong periodicity patterns in intraday volatility.
While the evidence of volatility clustering needs an appropriate
GARCH model to filter the return series of each market separately, the
existence of occasional extreme movements and fat-tailed distribution
furthermotivate the exploration of conditional EVT to estimate intraday
VaR and ES. The evidence of intraday periodicity also requires an adjust-
ment for intraday risk measurement.

4. Empirical findings

We divide the empirical study into two parts: an in-sample study
where the sample data are used for model estimation, and an out-of-
sample study to compare the accuracy of Conditional EVT approach to
VaR and ES calculation with other competing models.5 To do this, the
full data sample in each market is divided into an in-sample period
from September 20, 2013 to March 19, 2014 on which models are
based and an out-of-sample period from March 20, 2014 to May 07,
2014 over which forecasting performance of VaR and ES is measured.
All through this section, we look at losses; that is, we have chosen to
look at extremes in the negative part of the original return distribution.

4.1. In-sample evidence

The first step is to model the conditional volatility of in-sample
intraday return series using an appropriate GARCH approach. The vola-
tilities of intraday return series typically display a strong periodicity in
intervals of 24 h, as has been demonstrated in the previous section.
Andersen and Bollerslev (1997) and Martens et al. (2002), among
others, show that the estimates of traditional time-series models
(e.g., GARCH-type models) can be ruined by intraday periodic patterns.
Therefore, to prevent distortion of the results, the intraday seasonality
must be taken out prior to estimating any model. Hence, we first
remove the seasonality from the return series and then use the
deseasonalized filtered returns to estimate the traditional time series
models. Following a method proposed by Taylor and Xu (1997) and
subsequently used by others, we describe the deseasonalized filtered
return as the nth intraday return divided by an estimated seasonality
term,

~rt;v ¼ rt;v=St;v v ¼ 1;2; :::::::::;Vð Þ; ð20Þ
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where rt.,v is the vth intraday return on day t and St.,v is the respective
seasonality term, for V intraday periods. The seasonality term includes
averaging the squared returns for each intraday period, i.e.:

Ŝ
2
t;v ¼

1
T

XT
t¼1

r2t;v v ¼ 1;2; :::;Vð Þ; ð21Þ

where T is the total number of days in the sample. Thismethod seems to
be quite effective as it almost removes the U-shaped pattern from all se-
ries shown in Fig. 2. Thus,we use the deseasonalized returns to estimate
the intraday GARCH models.
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Fig. 1. Plot of return series of the
The appropriate model for each country is selected by adopting
the following procedure. First, various GARCH models i.e., ARMA
(0,0)-GARCH (1,1) models are estimated and compared using the
usual information criteria such as AIC, BIC and Log-likelihood statis-
tics. Once the model is selected, the ARMA–GARCH specifications are
augmented with additional AR, MA and ARCH, GARCH lagged terms
when necessary to eliminate autocorrelation in the standardized
and squared standardized residuals, respectively. Based on this
procedure, we have selected the appropriate ARMA (p1, q1)–GARCH
(p2, q2) model on different deseasonalized return series for each
country and the selected models are reported in Table 3. It appears
from the table that while asymmetric GARCH type model has fitted
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6 Here it needs to clarify how to choose the starting valueswhen estimating conditional
means and variances in the present study. We have chosen the starting values as the un-
conditional estimates ofmeans and variances of the in-sample return series. This is indeed
the choice of almost all software packages that estimate ARMA-GARCH type models. In
fact, the choice of alternative starting values does not matter much onmean and variance
forecasting for a larger sample, which can be evidenced from the illustration given in
Appendix A.
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volatilities of most of the countries, symmetric GARCH has modeled
volatilities of only two countries: Hong Kong and Singapore.

Table 3 also presents the estimated parameters of themean and var-
iance equations of the selected models. The constant term, AR (p1), and
MA (q1) coefficients in the mean equation are mostly significant. Simi-
larly, the parameters in the variance equation: the constant, the ARCH
(p2) coefficients, and the GARCH (q2) coefficients are significant in ma-
jority of the cases. The values of γ1 are also mostly significant, which
suggests that the conditional variance in majority of the countries is
an asymmetric function of past innovations, rising proportionately
more during market declines. Estimates of the conditional mean and

standard deviation series (μ̂ t−vþ1,…..,μ̂ t) and (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥt−vþ1

q
,…..,

ffiffiffiffiffi
ĥt

q
) can
be calculated recursively from Eqs. (13), and (14) or (15) or (16) or
(17), whichever is appropriate, respectively after substitution of sensi-
ble starting values.6
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Standardized residuals are calculated both to check adequacy of
the selectedmodels and to use in stage 2 of themethod. They are calcu-
lated as

zt−vþ1 ¼ rt−vþ1−μ̂ t−vþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥt−vþ1

q ;…………; zt ¼ rt−μ̂tffiffiffiffiffi
ĥt

q ð22Þ

and should be iid if the fitted model is tenable.
Panels A and B of Table 4, present diagnostic statistics of deseasona-

lized returns and their standardized residuals, respectively. The Ljung–
Box Q and Q2 statistics respectively provide an indication of whether
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Fig. 2. Intraday return (dotted) and deseasonalized
any serial correlation and heteroscedasticity are present in the data se-
ries. The results in Panel A strongly suggests that the deseasonalized
returns are not iid as required by EVT. In contrast, their standardized re-
siduals in Panel B are close to iid. Thus the filtering procedure advocated
by McNeil and Frey (2000) has been effective in producing iid residuals
on which EVT can be implemented. Q2 (16) statistic of standardized re-
siduals in all series failed to detect serial correlations in squared stan-
dardized residuals, suggesting that the selected GARCH models are
well specified. However, it appears from Panel B that skewness and ex-
cess kurtosis remain in the standardized residuals. It is also noted that
neither the deseasonalized return series nor their standardized residual
series are normally distributed as suggested by Jarque–Bera statistics.
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All these findings motivate the second stage of McNeil and Frey's EVT
implementation,where fat tails of the standardized residuals are explic-
itly modeled.

As mentioned earlier, we would employ the POT method using GPD
for tail estimation of the standardized residual series. The first step in
this modeling is to choose the threshold for identifying the relevant
tail region. However, this choice is subject to a trade-off between vari-
ance and bias. By increasing the number of observations for the series
of maxima (a lower threshold), some observations from the centre of
the distribution are introduced in the series, and the tail index is more
precise but biased (i.e., there is less variance). On the other hand,
choosing a high threshold reduces the bias but makes the estimator
more volatile (i.e., there are fewer observations). The problemoffinding
an optimal threshold is very subjective: we need to find a sufficiently
high threshold u, above which the GPD is a reasonable model of
exceedances. However, the threshold must also be chosen such that
we have sufficient data to accurately estimate parameters of the
distribution.

There is no unique choice of the threshold level. A number of diag-
nostic techniques exist for this purpose, including graphical bootstrap
methods (see Embrechts et al., 1997; Reiss & Thomas, 1997). To opti-
mize this trade-off between variance and bias inefficiency, we perform



Table 3
Parameter estimates for the ARMA–GARCH model (in-sample from September 20, 2013 to March 19, 2014).

Model fitted Mean equation Variance equation

Coefficient Probability Coefficient Probability

India ARMA (1,1)–APARCH (2,3) a0 = 0.010
a1 = 0.481
b1 = −0.572

a0 = 0.138
a1 = 0.000
b1 = 0.000

ω = 0.001
α1 = 0.108
α2 = −0.101
γ1 = 0.005
β1 = 1.819
β2 = −1.034
β3 = 0.208
δ1 = 1.591

ω = 0.034
α1 = 0.000
α2 = 0.000
γ1 = 0.170
β1 = 0.000
β2 = 0.000
β3 = 0.055
δ1 = 0.000

Japan ARMA (3,1)–TARCH (2,1) a0 = −0.001
a1 = 0.490
a2 = −0.053
a3 = −0.031
b1 = −0.486

a0 = 0.946
a1 = 0.000
a2 = 0.000
a3 = 0.060
b1 = 0.000

ω = 0.018
α1 = 0.043
α2 = −0.012
γ1 = 0.034
β1 = 0.935

ω = 0.000
α1 = 0.004
α2 = 0.439
γ1 = 0.000
β1 = 0.000

Taiwan ARMA (0,1)–EGARCH (1,1) a0 = −0.026
b1 = −0.157

a0 = 0.007
b1 = 0.000

ω = −0.109
α1 = 0.138
γ1 = −0.037
β1 = 0.912

ω = 0.000
α1 = 0.000
γ1 = 0.000
β1 = 0.000

Korea ARMA (2,1)–EGARCH (2,1) a0 = −0.006
a1 = 0.516
a2 = 0.019
b1 = −0.537

a0 = 0.554
a1 = 0.033
a2 = 0.085
b1 = 0.027

ω = −0.078
α1 = 0.206
α2 = −0.103
γ1 = −0.017
β1 = 0.975

ω = 0.000
α1 = 0.000
α2 = 0.000
γ1 = 0.008
β1 = 0.000

Hong Kong ARMA (0,2)–GARCH (1,1) a0 = −0.006
b1 = −0.050
b2 = −0.070

a0 = 0.440
b1 = 0.000
b2 = 0.000

ω = 0.071
α1 = 0.059
β1 = 0.875

ω = 0.000
α1 = 0.000
β1 = 0.000

Philippines ARMA (1,2)–APARCH (2,2) a0 = −0.008
a1 = 0.573
b1 = −0.468
b2 = 0.042

a0 = 0.559
a1 = 0.000
b1 = 0.000
b2 = 0.022

ω = 0.002
α1 = 0.157
α2 = −0.146
γ1 = 0.004
β1 = 1.582
β2 = −0.593
δ1 = 1.689

ω = 0.036
α1 = 0.000
α2 = 0.000
γ1 = 0.284
β1 = 0.000
β2 = 0.000
δ1 = 0.000

Singapore ARMA (0,1)–GARCH (2,1) a0 = −0.018
b1 = −0.224

a0 = 0.008
b1 = 0.000

ω = 0.087
α1 = 0.078
α2 = −0.039
β1 = 0.870

ω = 0.001
α1 = 0.000
α2 = 0.003
β1 = 0.000

UK ARMA (0,0)–TARCH (2,2) a0 = 0.014 a0 = 0.053 ω = 0.010
α1 = 0.103
α2 = −0.082
γ1 = 0.013
β1 = 1.275
β2 = −0.312

ω = 0.002
α1 = 0.000
α2 = 0.000
γ1 = 0.010
β1 = 0.000
β2 = 0.024

Germany ARMA (1,2)–EGARCH (2,3) a0 = 0.011
a1 = −0.665
b1 = 0.622
b2 = −0.058

a0 = 0.094
a1 = 0.000
b1 = 0.000
b2 = 0.000

ω = −0.008
α1 = 0.220
α2 = −0.209
γ1 = −0.004
β1 = 1.770
β2 = −0.713
β3 = −0.058

ω = 0.000
α1 = 0.000
α2 = 0.000
γ1 = 0.000
β1 = 0.000
β2 = 0.000
β3 = 0.000

Turkey ARMA (2,2)–TARCH (3,3) a0 = 0.011
a1 = 1.291
a2 = −0.495
b1 = −1.342
b2 = 0.525

a0 = 0.119
a1 = 0.000
a2 = 0.000
b1 = 0.000
b2 = 0.000

ω = 0.002
α1 = 0.093
α2 = −0.039
α3 = −0.049
γ1 = 0.007
β1 = 0.831
β2 = 0.770
β2 = −0.611

ω = 0.000
α1 = 0.000
α2 = 0.001
α3 = 0.000
γ1 = 0.000
β1 = 0.000
β2 = 0.000
β2 = 0.000

US ARMA (0,0) – EGARCH (1,1) a0 = 0.022 a0 = 0.007 ω = −0.092
α1 = 0.120
γ1 = −0.043
β1 = 0.990

ω = 0.000
α1 = 0.000
γ1 = 0.000
β1 = 0.000

Mexico ARMA (1,1)–APARCH (2,1) a0 = −0.003
a1 = −0.324
b1 = 0.395

a0 = 0.762
a1 = 0.007
b1 = 0.001

ω = 0.047
α1 = 0.189
α2 = −0.0923
γ1 = 0.040
β1 = 0.870
δ1 = 1.658

ω = 0.000
α1 = 0.000
α2 = 0.000
γ1 = 0.032
β1 = 0.000
δ1 = 0.000

Brazil ARMA (1,0)–EGARCH (2,1) a0 = −0.018
a1 = −0.060

a0 = 0.027
a1 = 0.000

ω = −0.058
α1 = 0.164
α2 = −0.087
γ1 = −0.003
β1 = 0.993

ω = 0.000
α1 = 0.000
α2 = 0.000
γ1 = 0.423
β1 = 0.000

(continued on next page)
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Table 3 (continued)

Model fitted Mean equation Variance equation

Coefficient Probability Coefficient Probability

Argentina ARMA (1,2)–TARCH (2,1) a0 = −0.016
a1 = 0.851
b1 = −0.803
b2 = 0.046

a0 = 0.299
a1 = 0.000
b1 = 0.000
b2 = 0.000

ω = 0.026
α1 = 0.114
α2 = −0.073
γ1 = 0.020
β1 = 0.921

ω = 0.000
α1 = 0.000
α2 = 0.000
γ1 = 0.014
β1 = 0.000

S Africa ARMA (0,2)–EGARCH (1,1) a0 = 0.005
b1 = −0.012
b2 = −0.023

a0 = 0.516
b1 = 0.187
b2 = 0.013

ω = −0.088
α1 = 0.113
γ1 = −0.017
β1 = 0.982

ω = 0.000
α1 = 0.000
γ1 = 0.001
β1 = 0.000

Australia ARMA (2,2)–APARCH (2,1) a0 = −0.005
a1 = −0.024
a2 = −0.701
b1 = 0.044
b2 = 0.696

a0 = 0.617
a1 = 0.870
a2 = 0.000
b1 = 0.762
b2 = 0.000

ω = 0.016
α1 = 0.099
α2 = −0.042
γ1 = 0.113
β1 = 0.938
δ1 = 1.452

ω = 0.000
α1 = 0.000
α2 = 0.007
γ1 = 0.007
β1 = 0.000
δ1 = 0.000

Note: The table reportsML estimates of the fitted ARMA–GARCHmodels with Student-t distribution governing the error terms. For each data series, parameter estimates are based on the
in-sample period from September 20, 2013 to March 19, 2014. The majority of parameter estimates are statistically significant at better than 1% level.
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aMonte Carlo simulation study. Return time-series are simulated from a
known distribution for which the tail index can be computed. For each
time series, the tail index value is estimated for different threshold
levels. The choice of the optimal value is based on the bias and the
mean squared error (MSE) criteriawhich allow one to take into account
the trade-off between bias and inefficiency. The procedure is detailed in
Appendix B.

Typically the threshold is chosen subjectively by looking at certain
plots such as the Mean Excess plot or the Hill plot, which are standard
Table 4
Diagnostic statistics of deseasonalized returns and ARMA–GARCH standardized residuals (in-s

Skewness Kurtosis Jarq

Panel A: In-sample return series
India −0.337 6.718 55
Japan −0.022 4.869 10
Taiwan 0.013 4.329 4
Korea −0.190 6.817 52
Hong Kong −0.238 7.959 82
Philippines 0.104 6.148 25
Singapore −0.030 3.504 1
UK −0.164 7.223 94
Germany −0.153 8.291 14,6
Turkey −0.440 7.433 79
US −0.089 5.931 34
Mexico 0.033 6.750 54
Brazil −0.123 4.828 14
Argentina −0.097 6.510 43
S Africa −0.274 5.296 26
Australia −0.187 4.769 12

Panel B: Standardized residuals
India −0.271 5.910 33
Japan −0.004 4.860 10
Taiwan 0.029 4.290 4
Korea 0.005 5.094 15
Hong Kong −0.262 7.984 83
Philippines 0.052 4.540 6
Singapore −0.051 3.525 1
UK −0.101 4.865 18
Germany −0.112 6.970 82
Turkey −0.383 6.331 45
US −0.225 5.002 16
Mexico −0.018 5.830 30
Brazil −0.256 6.384 49
Argentina −0.047 5.686 25
S Africa −0.306 7.217 87
Australia −0.189 4.765 12

Note: The table reports summary statistics for the in-sample deseasonalized returns and sta
governing the error terms. Panels A and B report diagnostics for the deseasonalized returns an
p values of Ljung–Box Q (16) and Q2 (16) statistics are given in the parentheses.
practices in EVT. Here we would select the threshold using the Mean
Excess plot which is a plot of Mean Excess Function (MEF). The MEF is
defined by

e uð Þ ¼

Xn
i¼1

Xi−uð Þ

Xn
i¼1

I XiNuf g

ð23Þ
ample from September 20, 2013 to Mrach 19, 2014).

ue–Bera Q (16) Q2 (16)

15.23 (0.000) 29.709 (0.020) 1368.400 (0.000)
56.54 (0.000) 44.398 (0.000) 596.760 (0.000)
64.31 (0.000) 101.960 (0.000) 141.730 (0.000)
51.75 (0.000) 12.763 (0.690) 412.150 (0.000)
28.52 (0.000) 33.427 (0.000) 241.020 (0.000)
38.24 (0.000) 456.790 (0.000) 1444.000 (0.000)
25.58 (0.000) 472.070 (0.000) 179.980 (0.000)
56.64 (0.000) 17.974 (0.325) 1222.100 (0.000)
82.56 (0.000) 51.788 (0.000) 1559.100 (0.000)
00.46 (0.000) 35.719 (0.000) 2638.300 (0.000)
17.78 (0.000) 14.248 (0.580) 2246.200 (0.000)
15.26 (0.000) 105.800 (0.000) 1232.400 (0.000)
45.63 (0.000) 43.927 (0.000) 488.640 (0.000)
87.55 (0.000) 589.600 (0.000) 1067.100 (0.000)
91.51 (0.000) 32.964 (0.007) 1209.800 (0.000)
23.04 (0.000) 41.578 (0.000) 1343.100 (0.000)

85.13 (0.000) 36.600 (0.001) 22.139 (0.076)
45.96 (0.000) 35.210 (0.000) 13.718 (0.319)
38.31 (0.000) 16.380 (0.357) 19.404 (0.196)
21.22 (0.000) 14.475 (0.341) 11.433 (0.575)
26.24 (0.000) 33.947 (0.002) 20.715 (0.109)
07.00 (0.000) 23.517 (0.036) 20.657 (0.080)
39.44 (0.000) 19.931 (0.175) 14.347 (0.499)
54.78 (0.000) 17.467 (0.356) 21.584 (0.157)
64.67 (0.000) 19.281 (0.115) 22.079 (0.054)
17.08 (0.000) 45.201 (0.000) 13.470 (0.490)
68.73 (0.000) 9.228 (0.904) 14.399 (0.276)
84.33 (0.000) 34.054 (0.002) 10.777 (0.703)
78.08 (0.000) 17.588 (0.285) 12.587 (0.634)
63.79 (0.000) 15.813 (0.259) 14.899 (0.314)
69.10 (0.000) 17.047 (0.254) 0.158 (1.000)
18.20 (0.000) 23.897 (0.021) 19.498 (0.077)

ndardized residuals from the fitted ARMA–GARCH models with Student-t distribution
d standardized residuals, respectively. The latter are the basis of the EVT estimation. The



Table 5
Parameter estimates for the ARMA–GARCH–EVT called Conditional EVT model (in-sample from September 20, 2013 to March 19, 2014).

T u k k/T (%) ξ ψ VaR quantile ES quantile

0.95 0.99 0.995 0.95 0.99 0.995

India 9272 0.985 1282 13.83 0.079** (2.812) 0.605** (25.311) 1.608 (0.02) 2.825 (0.04) 3.405 (0.08) 2.318 (0.03) 3.640 (0.09) 4.269 (0.11)
Japan 7259 1.251 667 9.19 0.040 (1.039) 0.568** (18.190) 1.600 (0.02) 2.567 (0.04) 3.003 (0.06) 2.206 (0.03) 3.213 (0.08) 3.667 (0.12)
Taiwan 6307 1.365 507 8.04 0.043 (0.958) 0.511** (15.812) 1.610 (0.02) 2.479 (0.04) 2.872 (0.06) 2.155 (0.03) 3.063 (0.09) 3.473 (0.13)
Korea 8330 1.150 864 10.37 0.087* (2.23) 0.553** (19.424) 1.567 (0.05) 2.585 (0.09) 3.069 (0.11) 2.212 (0.07) 3.327 (0.11) 3.857 (0.13)
Hong Kong 7956 0.925 1088 13.68 0.105** (3.273) 0.606** (22.680) 1.568 (0.02) 2.747 (0.05) 3.320 (0.08) 2.319 (0.04) 3.637 (0.10) 4.276 (0.13)
Philippines 6120 1.175 587 9.59 −0.019 (−0.471) 0.621** (17.250) 1.577 (0.03) 2.559 (0.05) 2.971 (0.08) 2.185 (0.04) 3.146 (0.11) 3.549 (0.16)
Singapore 11,712 1.365 959 8.19 −0.059* (−1.880) 0.559** (22.259) 1.637 (0.01) 2.470 (0.03) 2.806 (0.04) 2.149 (0.02) 2.937 (0.04) 3.254 (0.06)
UK 12,648 1.150 1333 10.54 0.0141 (0.481) 0.634** (24.770) 1.625 (0.05) 2.669 (0.09) 3.125 (0.11) 2.275 (0.07) 3.333 (0.11) 3.796 (0.13)
Germany 12,546 0.985 1528 12.18 0.086** (3.142) 0.613** (26.772) 1.552 (0.02) 2.695 (0.04) 3.237 (0.07) 2.276 (0.03) 3.526 (0.10) 4.120 (0.14)
Turkey 9282 1.200 920 9.91 0.081** (2.551) 0.624** (21.825) 1.639 (0.03) 2.774 (0.06) 3.311 (0.09) 2.361 (0.05) 3.592 (0.11) 4.174 (0.14)
US 9516 1.215 953 953 0.047 (1.382) 0.617** (21.408) 1.647 (0.02) 2.711 (0.04) 3.195 (0.06) 2.315 (0.03) 3.432 (0.08) 3.939 (0.12)
Mexico 9240 1.125 985 10.66 0.015 (0.44) 0.648** (21.889) 1.618 (0.02) 2.685 (0.04) 3.152 (0.07) 2.283 (0.03) 3.365 (0.09) 3.839 (0.13)
Brazil 10,200 1.200 1008 10.01 0.043 (1.55) 0.611** (23.961) 1.622 (0.05) 2.670 (0.08) 3.144 (0.10) 2.280 (0.07) 3.374 (0.12) 3.869 (0.15)
Argentina 8520 1.250 782 9.18 0.053* (1.702) 0.556** (21.131) 1.593 (0.02) 2.557 (0.04) 2.998 (0.07) 2.199 (0.03) 3.217 (0.11) 3.683 (0.14)
S Africa 11,590 1.100 1395 12.04 0.103** (4.834) 0.545** (29.270) 1.601 (0.05) 2.644 (0.09) 3.149 (0.11) 2.265 (0.07) 3.427 (0.11) 3.990 (0.14)
Australia 8979 1.350 724 8.06 0.032 (0.890) 0.558** (19.243) 1.619 (0.02) 2.555 (0.04) 2.974 (0.06) 2.205 (0.03) 3.172 (0.08) 3.605 (0.12)

Note: The table reports in-sampleML estimates of the GPD for the ARMA–GARCH–EVTmodel. T= total no. of observations, u= threshold level, k=No. of exceedances, k/T=percentage
of exceedances. The t-statistics are given in the parenthesis in columns 6 and 7, while asterisks demonstrate the level of statistical significance. The asterisks (*) and (**) denote significance
at 5% and 1% levels, respectively. The standard errors of quantile estimates are calculated by bootstrapping of 1000 samples for each index and are listed in parenthesis of columns 8–13. It
may be noted that ξ value is significant for 50% of the countries and insignificant for another 50% of the countries. So one should take the fact into consideration and interpret the result
cautiously.

45M. Karmakar, S. Paul / International Review of Financial Analysis 44 (2016) 34–55
where I is an indicator function and

I ¼ 1 if XtNu
¼ 0 otherwise

:

The MEF is the sum of the excesses over the threshold u divided by
the number of data points which exceed the threshold u. It is an esti-
mate of the mean excess function which describes the expected over-
shoot of a threshold once an exceedance occurs.

The interpretation of the mean excess plot is given in Beirlant,
Teugels, and Vynckier (1996), Embrechts et al. (1997) and Hogg
and Klugman (1984). If the empirical MEF is a positively sloped
straight line above a certain threshold u, it is an indication that the
data follow the GPD with a positive shape parameter ξ. On the
other hand, exponentially distributed data would show a horizontal
MEF while short-tailed data would have a negatively sloped line. The
MEF of negative returns in each country is estimated to choose
thresholds. From the MEF, the thresholds can be selected on the
criterion of linearity in MEF plots.7 While choosing threshold level
subjectively from MEF plot, we make sure that the number of
exceedances does not fall beyond a range in which bias and MSE
are minimized as explained in Appendix B.

Based on theMEF plots we have chosen the thresholds for eachmar-
ket which along with its related statistics are reported in Table 5. The
value of threshold for each market ranges from 0.925 to 1.365 and the
number of exeedences, k (the number of points above the threshold)
in each country is found to vary from 507 to 1528which is large enough
to facilitate a good estimation. In each case, the resulting exceedances k
total roughly 10% of the sample, which is consistent with percentages
reported by McNeil and Frey (2000).

As mentioned in Sub-section 2.1, the shape (ξ) and scale (ψ) param-
eters have been estimated by using the log-likelihood function:

log L ξ;ψ; y1;…; ykð Þ ¼
Xk
j¼1

logGξψ yj

	 

¼ −k log ψ− 1þ 1

ξ

� �Xk
j¼1

log 1þ ξ
yj

ψ

� �
ð24Þ

where yj=Zj−u and Zj defines the standardized residuals exceeding
the identified threshold value of u. Maximizing the log likelihood of
7 The MEF of negative returns has been plotted but not shown in the paper for brevity.
To get themean excess function of negative returns (left tail) we have transformed the re-
sidual series zt in to –zt then the results for the minimum can be directly deduced from
those of maximum.
Eq. (24) s. t. ψ N 0, 1+ξyj/ψN0, the most likely values of ξ and ψ for
each market are obtained and also reported in Table 5. Recall that
value of ξ N 0 reflects heavy-tailed distributions. In fourteen out of six-
teen countries the ξ estimate is positive suggesting that the left tail of
the distribution of standardized residuals is mostly characterized
by heavy tailedness. The table further documents the EVT tail quantiles:
VâRq and ESq for each country which are obtained from Eqs. (4) and (6)
respectively, using the values of n, u, k, ξ and ψ of the respective country
at the specified end tail ofα%. For example, the tail quantiles VaR0.95and
ES0.95for deseasonalized returns of India are calculated as

VaR0:95 ¼ 0:985þ 0:605
0:079

1−0:95
1282=9272

� �−0:079

−1

" #
¼ 1:608 ð25Þ

and

ES0:95 ¼ 1:608
1−0:079

þ 0:605−0:079 � 0:985
1−0:079

¼ 2:318 ð26Þ

Though theVâRq quantile atα=5% is less than that under a normal
distribution, the fatness of the tail is readily apparent, especially as we
move to more extreme quantiles.

The EVT suggests that the excess distribution above a suitable
threshold of intraday returns should follow a GPD. To determine how
the GPD fits the tails of the return distribution, we plot the empirical
distribution of exceedances alongwith the cumulative distribution sim-
ulated by a GPD in Fig. 3 and compare the results visually for each coun-
try. The empirical excess distribution function follows closely the trace
of a corresponding GPD, implying that the GPDmodels the exceedances
very well for each market.

After specifying ourmodel completely by estimating the parameters
and subsequently verifying the fitness of the model, we can now calcu-
late the robust VaR and ES estimates based on Eqs. (18) and (19) respec-
tively, where we multiply the GARCH volatilities with respective
quantiles and finally add the conditional means. We report below the
95 percentile intraday VaR and ES for India. As shown earlier, the
VaR0.95 and ES0.95 quantiles for India are found to be 1.608 and 2.318,
respectively. For a five minute horizon, the intraday VaR and ES specifi-
cations of India are:

VaRtþ1
0:95 ¼ μ̂ tþ1 þ 1:608

ffiffiffiffiffiffiffiffiffi
ĥtþ1

q
ð27Þ
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and

EStþ1
0:95 ¼ μ̂ tþ1 þ 2:318

ffiffiffiffiffiffiffiffiffi
ĥtþ1

q
ð28Þ
Fig. 3. Tail estimate
Because intraday seasonality has been taken into account, the intra-

day forecasts of conditional mean (μ̂ tþ1) and variances (ĥtþ1) are based
on deseasonalized filtered returns. So to compute VaRq

t+1 and ESq
t+1 for

the original returns, it requires to re-include the seasonal component to
plot for GPD fit.



Fig. 3 (continued).
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the intraday forecasts of condition mean and variance based on the

deseasonalized filtered returns. To do so, we multiply μ̂tþ1 and ĥtþ1 by

the appropriate seasonal term Ŝt;v and its square Ŝ
2
t;v respectively, i.e.

~μ tþ1 ¼ μ̂ tþ1

� �
Ŝt;v

	 

ð29Þ
~htþ1 ¼ ĥtþ1

	 

Ŝ
2
t;v

	 

ð30Þ

where, ~μtþ1 and ~htþ1 are the transformed forecast of conditional mean

and variance, respectively for the original returns, and Ŝt;v is estimated
by the method described in the previous section.



Table 6
Relevant information of in-sample and out-of-sample periods.

In-sample Out–of-sample

Obs./day No. of days Total obs. Obs./day No. of days Total obs.

India 76 122 9272 76 30 2280
Japan 61 119 7259 61 31 1891
Taiwan 53 119 6307 53 33 1749
Korea 70 119 8330 70 32 2240
Hong Kong 68 117 7956 68 31 2108
Philippines 51 120 6120 51 30 1530
Singapore 96 122 11,712 96 33 3168
UK 102 124 12,648 102 32 3264
Germany 102 123 12,546 102 32 3264
Turkey 78 119 9282 78 33 2574
US 78 122 9516 78 33 2574
Mexico 77 120 9240 77 31 2387
Brazil 85 120 10,200 85 31 2635
Argentina 71 120 8520 71 28 1988
S Africa 95 122 11,590 95 29 2755
Australia 73 123 8979 73 32 2336

Note: Three columns of both in-sample and out-of-sample periods, show number of sam-
ple observations in the return series per day, number of trading days and total number of
sample observations finally after removing certain figures from the raw price set for each
country. If number of days and total observations for both in-sample and out-of-sample
periods are added, we get the number of days and total observations for the total period
shown in Table 1.

48 M. Karmakar, S. Paul / International Review of Financial Analysis 44 (2016) 34–55
Thus an estimate of the VaR and ES for the original returns are

VaRtþ1
q ¼ ~μ tþ1 þ

ffiffiffiffiffiffiffiffiffiffi
~htþ1

q
VâRq ð31Þ

and

EStþ1
q ¼ ~μtþ1 þ

ffiffiffiffiffiffiffiffiffi
~htþ1

q
ESq ð32Þ

Using Eqs. (31) and (32), our intraday VaR and ES specifications for
original returns of India are:

VaRtþ1
0:95 ¼ ~μtþ1 þ 1:608

ffiffiffiffiffiffiffiffiffiffi
~htþ1

q
ð33Þ

and

EStþ1
0:95 ¼ ~μ tþ1 þ 2:318

ffiffiffiffiffiffiffiffiffi
~htþ1

q
ð34Þ

4.2. Out-of-sample evidence

Till now, we have only looked in-sample, essentially fitting the
Conditional EVT model to (extreme) data. In practice however, a risk
manager is probably more interested in how well he or she can predict
future extreme movements than in accurately modeling the past. To
compare the accuracy of Conditional EVT for VaR and ES calculation
with other alternatives, we have done backtesting of each method on
out-of-sample return series using the following procedure.

In the beginning, the most recent n returns are used to estimate
model parameters for each approach. The magnitude of n is set to
be equal to the length of the in-sample period. That is, n = 9272 in
Indian market, n = 7259 in Japanese market and so on as reported
in Table 6. From the parameter estimates, the next interval VaR and ES
are computed. Thus if we have the return series r1 , r2 , . . . . . . . . . . ,
rn , . . . . . . , rm, the conditional VaRqt and ESqt are computed on t intervals
in the set T = {n + 1, ……., m} using an n interval window each
time.8 In other words, keeping the size of the window n constant, the
estimation procedure is rolled forward one interval and repeated
to calculate the next interval VaR and ES. The main advantage of
this rolling window technique is that it allows us to capture dynamic
time-varying characteristics of the data in different time periods.
As documented by McNeil and Frey (2000) and Gencay, Selcuk, and
Ulugulyagci (2003), within the backtest period, it is difficult to choose
the best parameterization of ARMA–GARCH model every time, so it is
assumed that the model selected to the in-sample return series, as re-
ported in Table 3 is adequate for each of the vi (recall that vi is defined
as the number of observations per day of the ith country) rolling win-
dows of first day of the out of sample period. A similar constraint is
also related to the GPD modeling. In a long back test it is less feasible
to examine the fitted model carefully every interval and to choose a
threshold value (to determine a new value of k) for the tail estimator
each time. For this reason the percentage of exceedances determined
from the threshold value chosen for the first n sample, is set fixed for
each of vi rolling windows of the first day of the out of sample period.
Thus for each of the vi rollingwindows of the first day of the out of sam-
ple period, we fit the same ARMA–GARCH model to generate a new set
of standardized residuals and determine a new GPD quantile estimated
on each set of the standardized residuals to calculate vi one step ahead
intraday VaR and ES. Thereafter, we re-estimate the whole model
(ARMA–GARCH–EVT) and follow the same steps to forecast next vi
one step ahead intraday VaR and ES for the second day of the out of
8 Here T is the total number of intervals of out-of-sample period i.e., T=2280 for India,
T=1891 for Japan and so on as reported in Table 6. Thus for example, the return series for
India is r1,r2, . . . . . . . . . . ,r9272, . . . . . . ,r11552(=9272+2280) and for Japan is r1, r2, . . . . . . . . . . ,
r7259, . . . . . . ,r9150(=7259+1891).
sample period. This process is repeated until the vi interval returns of
the last day.

Thus using the above procedure we estimate one step ahead intra-
day VaR and ES for each interval of the total out of sample period.
Such procedure, as mentioned above, is called Conditional EVT. The
Conditional EVT based intraday VaR and ES for the original returns are
computed based on Eqs. (31) and (32) respectively, which have re-
included the intraday periodicity component. In addition, we estimate
the Unconditional EVT qth quantiles for VaR and ES using Eqs. (4) and
(6) respectively, applied to the deseasonalized return series. To get the
Unconditional EVT based intraday VaR and ES for original return series
the Unconditional EVT qth quantiles calculated above have been multi-

plied by the seasonality component Ŝt;v defined earlier. The intraday VaR
and ES for three other models (i.e., Static Normal, Conditional Normal
and RiskMetrics) are also computed on rolling basis and the seasonality
is adjusted in the same way.

4.2.1. Backtesting of VaR
Various methods and tests have been suggested for evaluating VaR

model accuracy. Here, we first use Binomial test and then apply differ-
ent Likelihood ratio tests for coverage probability.

4.2.1.1. Binomial test. The following step consists of comparing the

quantile estimate in t + 1, VâRtþ1
q given by each method, with rt+1,

the log-negative return in t + 1, for q∈{0.95,0.99,0.995}. A violation is

said to take place whenever rt+1 b VâRtþ1
q . We can test whether

the number of violations is statistically significant. In particular, let us
consider the following statistic based on the binomial distribution:

Z ¼
Y
T
−pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1−pð Þ
T

r → N 0;1ð Þ ð35Þ

where T=(m− n) is the number of intervals of the out-of-sample and
Y is the number of violations, so that Y/T is the actual proportion of
violations in the T period. The proportion of p is the expected number
of violations under the assumption that Y = ∑t∈T It ~ B(T,p), where

It = 1 {if rt+1 b VâRtþ1
q }, It and Is are independent for t, s ∈T, t ≠ s, and

B(T,p) is binomial distribution.



Table 7
Backtesting of VaR (statistics of binomial test).

S Norm Cond Norm RM Unc. EVT Cond. EVT

Panel A: α = 5%
India −3.075**

(0.001)
1.441
(0.075)

−0.577
(0.282)

−2.592**
(0.005)

−0.672
(0.251)

Japan −2.379**
(0.0089)

0.892
(0.186)

0.259
(0.398)

−1.849*
(0.033)

0.470
(0.681)

Taiwan −1.476
(0.070)

0.499
(0.309)

−1.256
(0.105)

−0.594
(0.275)

−0.598
(0.275)

Korea −4.169**
(0.000)

−0.679
(0.249)

0.097
(0.461)

−3.293**
(0.001)

−0.776
(0.219)

Hong Kong 0.260
(0.398)

4.257**
(0.000)

0.360
(0.360)

1.161
(0.121)

0.660
(0.255)

Philippines −6.041**
(0.000)

−0.880
(0.190)

1.349
(0.089)

−5.568**
(0.000)

−1.114
(0.133)

Singapore −1.418
(0.078)

−0.521
(0.301)

−0.277
(0.391)

−1.416
(0.078)

−1.255
(0.105)

UK −2.104*
(0.0177)

1.510
(0.066)

1.269
(0.102)

−0.738
(0.231)

−0.739
(0.230)

Germany 3.437**
(0.000)

5.525**
(0.000)

−0.498
(0.309)

5.445**
(0.000)

0.787
(0.216)

Turkey −5.218**
(0.000)

0.389
(0.349)

0.479
(0.316)

−4.676**
(0.000)

−1.149
(0.125)

US 5.182**
(0.000)

3.735**
(0.000)

1.293
(0.098)

4.736**
(0.000)

0.027
(0.489)

Mexico −2.662**
(0.004)

1.000
(0.159)

−0.315
(0.377)

−2.097*
(0.018)

−1.535
(0.062)

Brazil 0.469
(0.319)

0.112
(0.456)

−2.033*
(0.021)

1.048
(0.152)

−0.782
(0.217)

Argentina −4.055**
(0.000)

2.634**
(0.004)

1.914*
(0.028)

−3.433**
(0.000)

0.062
(0.475)

S Africa −5.748**
(0.000)

−1.115
(0.133)

−0.153
(0.439)

−4.741**
(0.000)

−1.464
(0.072)

Australia −1.880*
(0.030)

0.114
(0.455)

0.209
(0.417)

−1.878*
(0.030)

−0.646
(0.259)

No. of rejections 12 4 2 11 0

Panel B: α = 1%
India 1.726*

(0.042)
1.095
(0.137)

4.041**
(0.000)

−0.378
(0.352)

1.095
(0.137)

Japan 1.870*
(0.031)

0.714
(0.238)

4.643**
(0.000)

−0.671
(0.250)

0.945
(0.172)

Taiwan 2.285*
(0.011)

−0.118
(0.453)

1.564
(0.059)

1.327
(0.0923)

0.843
(0.200)

Korea 0.552
(0.290)

0.552
(0.290)

6.286**
(0.000)

−2.204*
(0.013)

0.340
(0.367)

Hong Kong 2.828**
(0.002)

−0.018
(0.493)

4.798**
(0.000)

−0.018
(0.493)

−0.674
(0.250)

Philippines −1.619
(0.053)

−1.876*
(0.030)

2.235*
(0.013)

−2.643**
(0.004)

−0.848
(0.198)

Singapore 1.486
(0.069)

−0.836
(0.202)

1.486
(0.069)

0.059
(0.477)

−0.836
(0.202)

UK 2.174*
(0.015)

2.400**
(0.008)

3.582**
(0.000)

−2.104*
(0.012)

−0.640
(0.261)

Germany 9.915**
(0.000)

1.471
(0.071)

6.396**
(0.000)

−4.508**
(0.000)

−0.345
(0.475)

Turkey −0.543
(0.294)

1.731*
(0.042)

4.806**
(0.000)

−4.504**
(0.000)

−0.345
(0.365)

US 10.154**
(0.000)

−1.137
(0.128)

4.806**
(0.000)

3.619**
(0.000)

−1.533
(0.063)

Mexico −0.385
(0.350)

−2.030*
(0.021)

1.056
(0.146)

−1.824*
(0.034)

−2.442**
(0.007)

Brazil 4.826**
(0.000)

1.498
(0.067)

3.064**
(0.001)

0.324
(0.374)

1.106
(0.134)

Argentina −1.776*
(0.038)

−0.875
(0.191)

3.859**
(0.000)

−2.450**
(0.007)

−0.424
(0.336)

S Africa −1.446
(0.074)

−2.212*
(0.014)

2.384**
(0.009)

−3.358**
(0.001)

−2.212*
(0.014)

Australia −1.115
(0.133)

−1.323
(0.093)

2.836**
(0.002)

−3.194**
(0.000)

−1.530
(0.063)

No. of rejections 9 5 13 10 2

Panel C: α = 0.5%
India 3.444**

(0.000)
1.663*
(0.048)

7.007**
(0.000)

0.775
(0.221)

1.663*
(0.048)

Japan 3.112**
(0.001)

−1.452
(0.073)

4.416**
(0.000)

−0.148
(0.441)

−1.126
(0.130)

(continued on next page)
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Table 7 (continued)

S Norm Cond Norm RM Unc. EVT Cond. EVT

Taiwan 4.833**
(0.000)

−0.253
(0.400)

3.477**
(0.000)

2.463**
(0.005)

0.764
(0.222)

Korea 0.539
(0.295)

−0.360
(0.360)

5.932**
(0.000)

−2.453**
(0.006)

−0.060
(0.476)

Hong Kong 5.392**
(0.000)

−1.093
(0.137)

4.774**
(0.000)

−1.093
(0.137)

−1.093
(0.137)

Philippines −0.961
(0.168)

−2.048*
(0.020)

4.839**
(0.000)

−1.683*
(0.045)

−0.236
(0.407)

Singapore 1.552
(0.060)

1.472
(0.071)

1.552
(0.060)

−0.714
(0.237)

−1.471
(0.071)

UK 3.395**
(0.000)

−2.809**
(0.003)

4.636**
(0.000)

−1.816*
(0.034)

−1.072
(0.142)

Germany 12.328**
(0.000)

0.665
(0.253)

7.862**
(0.000)

2.413**
(0.008)

1.161
(0.123)

Turkey −0.802
(0.211)

−1.920*
(0.027)

6.184**
(0.000)

−3.038**
(0.001)

−0.243
(0.404)

US 12.891**
(0.000)

−1.920*
(0.027)

6.743**
(0.000)

2.831**
(0.002)

−1.920*
(0.027)

Mexico 1.760*
(0.039)

−2.012*
(0.022)

1.760*
(0.039)

−2.010*
(0.022)

−1.722*
(0.043)

Brazil 6.304**
(0.000)

−0.048
(0.481)

4.923**
(0.000)

0.505
(0.307)

−0.048
(0.481)

Argentina 0.019
(0.492)

−2.207*
(0.014)

4.789**
(0.000)

−2.205*
(0.014)

−1.253
(0.105)

S Africa −0.209
(0.417)

−1.290
(0.099)

3.032**
(0.001)

−2.908**
(0.002)

−1.290
(0.099)

Australia −0.493
(0.311)

−1.079
(0.140)

3.907**
(0.000)

−1.662*
(0.049)

−1.079
(0.140)

No. of rejections 9 7 15 11 3

Note: The table presents binomial test statistics VaR violation ratio under each competing approach. p values are given in the parentheses. The asterisks (*) and (**) denote significance at
5% and 1% levels, respectively.
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Expression (35) is a one-tailed test that is asymptotically distributed
as standard normal (see, e.g., Larsen &Marx, 1986, chapter 5). If Y/T b p,
we test the null hypothesis of estimating correctly the conditional
quantile against the alternative that the method systematically under-
estimates it. Otherwise, we test the null hypothesis against the alterna-
tive that the method systematically overestimates the conditional
quantile.

Table 7 presents our backtesting results of binomial test for each indi-
vidual market. The table shows the binomial test statistics with p values
for 95%, 99%, and 99.5% quantiles, respectively. As a decision rule,we take
a p value less than 5% to be evidence against the null hypothesis. It
appears from the table that out of 48 cases (16markets × 3 quantiles) an-
alyzed, the null hypothesis is rejected 30 times under the Static Normal,
16 times under the Conditional Normal, 30 times under the RiskMetrics,
32 times under the Unconditional EVT and only 5 times under the Condi-
tional EVT. The null hypothesis is accepted for the rest of the cases of dif-
ferentmodels where there is no significant difference between empirical
and theoretical violations. In terms of number of rejection of null hypoth-
esis, the Conditional EVT performs the best and the Unconditional EVT
performs the least.

4.2.1.2. Likelihood ratio tests. To assess the forecasting performance of the
VaR methods more precisely, we have also adopted the likelihood ratio
tests for unconditional coverage, independence and conditional cover-
age, which are explained below.

At each time t+1,we introduce the violation indicator variable It+1,

which compares the VâRtþ1
q with the rt+1:

Itþ1 ¼ 1; if rtþ1bVâR
tþ1
q

0; otherwise

(
ð36Þ

The test of unconditional coverage consists of examining if the real-

ized coverage p ¼ ∑
T

t¼0
Itþ1=T equals to the theoretical coverage p. This is

equivalent to testing if the indicator variable It+1 follows an iid Bernoulli
process with parameters p; where pequals to VaR's theoretical coverage
rate α. The likelihood ratio (LR) test statistic for the unconditional cov-
erage test follows a χ2 distribution with one degree of freedom. That is,

LRuc ¼ 2 log
1−pð ÞT0pT1

1−T1=Tð ÞT0 T1=Tð ÞT1

" #
� χ2 1ð Þ ð37Þ

where T0 and T1 are the number of zeros and ones, respectively in the
violation sequence.

The drawback of this unconditional coverage testing method is that
it fails to properly characterize the behavior of the model in the pres-
ence of clustering. Itmay happen that, although the number of violation
is correct, they might occur in clusters. To take into account that possi-
bility, we also perform the test of independence and the test of condi-
tional coverage suggested in Christoffersen (1998). The first tests for
independence and the second tests for both independence and correct
coverage leading to a complete test of correct conditional coverage,
without making any hypothesis about the underlying true conditional
distribution. Christoffersen's (1998) LR test for independence, against
an explicit first-order Markov alternative is given by:

LRind ¼ −2 log
1−T1=Tð ÞT0 T1=Tð ÞT1

1−π01ð ÞT00πT01
01

" #
� χ2 1ð Þ ð38Þ

where, Tij, i , j=0,1 is the number of observations with a j following an i
in It sequence, and π01=T01/(T00+T01). Here too the LR test for inde-
pendence follows a χ2 distribution of one degree of freedom.

Christoffersen's (1998) conditional coverage test is thus a joint test
for independence and correct unconditional coverage, which involves
estimation of the following LR statistic:

LRcc ¼ LRuc þ LRind � χ2 2ð Þ ð39Þ

This statistic follows a χ2 distribution with two degree of freedom.



Table 9
Backtesting of VaR (statistical tests of independence).

S Norm Cond Norm RM Unc. EVT Cond. EVT

α = 5%
India 5.604* 0.000 3.823 6.207* 0.246
Japan 0.000 0.517 5.975* 0.038 0.814
Taiwan 15.207** 16.204** 17.583** 12.973** 19.731**
Korea 6.597* 0.227 1.707 8.573** 0.091
Hong Kong 3.621 1.336 4.135* 5.823* 1.920
Philippines 9.085** 0.228 9.981** 8.818** 1.136
Singapore 0.128 0.078 2.125 0.128 0.073
UK 26.535** 8.714** 13.305** 24.127** 8.020**
Germany 7.325** 6.161* 8.734** 9.692** 6.042*
Turkey 20.386** 4.203* 21.248** 17.779** 2.066
US 14.218** 0.908 5.974* 13.319** 2.433
Mexico 0.503 1.469 0.113 1.153 5.664*
Brazil 10.571** 3.178 6.441* 12.433** 2.993
Argentina 0.176 0.146 1.059 1.773 0.282
S Africa 2.211 1.622 2.388 2.527 1.886
Australia 11.434** 2.474 10.149** 11.433** 3.318

α = 1%
India 5.533* 0.342 2.984 4.532 0.342
Japan 0.194 0.000 1.226 0.325 0.734
Taiwan 33.327** 14.957** 16.413** 28.760** 15.266**
Korea 2.646 2.301 6.106* 0.522 2.118
Hong Kong 2.061 0.035 0.123 0.040 1.259
Philippines 1.759 0.340 0.233 4.134* 0.770
Singapore 1.825 0.012 0.000 0.062 0.012
UK 12.268** 0.551 3.483 0.449 0.845
Germany 14.651** 1.677 6.531* 23.259** 0.097
Turkey 11.548** 3.152 4.420* 7.017** 1.119
US 12.762** 2.267 4.578* 20.303** 0.506
Mexico 1.494 0.668 2.913 0.767 0.490
Brazil 0.397 0.061 0.155 2.449 0.173
Argentina 1.109 1.054 0.044 0.330 0.188
S Africa 2.430 0.755 10.781** 0.293 0.755
Australia 2.430 1.010 5.083* 2.768 0.894

α = 0.5%
India 3.602 2.965 1.738 4.382 2.965
Japan 0.069 0.107 0.688 1.967 0.154
Taiwan 28.760** 2.427 23.978** 22.227** 1.289
Korea 0.614 0.362 2.849 0.032 0.438
Hong Kong 3.235 0.188 0.427 0.188 0.188
Philippines 4.134* 0.021 0.013 6.583* 0.260
Singapore 0.244 0.255 0.244 0.432 0.255
UK 8.135** 0.062 3.230 0.200 0.357
Germany 21.921** 0.899 7.489** 7.028** 1.100
Turkey 2.125 4.072* 6.690** 8.907** 1.505
US 16.408** 4.334* 3.589 7.267** 4.334*
Mexico 0.362 0.084 1.109 0.084 0.122
Brazil 4.081* 0.520 0.150 0.694 0.520
Argentina 0.408 0.036 2.603 0.036 0.146
S Africa 0.497 0.237 0.016 0.026 0.237
Australia 1.959 0.221 8.738** 3.887* 0.221
No. of violations 22 7 21 22 6

Note: The table presents statistical test of independence (ind) of the intraday VaR forecasts
under each competing approach. Following Chen et al. (2012), we have extended the test
up to four lags but reported the results for 4th lag. The test is asymptotically distributed as
χ2 with d.f. one. The asterisks (*) and (**) denote significance at 5% and 1% levels,
respectively.

Table 8
Backtesting of VaR (Statistical tests of unconditional coverage).

S norm Cond norm RM Unc. EVT Cond. EVT

α = 5%
India 10.436** 1.998 0.338 7.279** 0.462
Japan 6.147* 0.773 0.066 3.632 0.217
Taiwan 2.292 0.245 1.648 0.358 0.365
Korea 20.017** 0.470 0.009 12.069** 0.616
Hong Kong 0.067 16.190* 0.128 1.311 0.427
Philippines 48.883** 0.799 1.739 40.212** 1.294
Singapore 2.086 0.276 0.077 2.074 1.627
UK 4.672* 2.201 1.563 0.550 0.556
Germany 10.976** 27.200** 0.251 26.456** 0.608
Turkey 32.289** 0.150 0.227 25.379** 1.362
US 23.747** 12.728** 1.617 20.017** 0.001
Mexico 7.694** 0.973 0.100 4.674* 2.467
Brazil 0.217 0.012 4.382* 0.828 0.625
Argentina 19.039** 6.439* 3.465 13.299** 0.004
S Africa 39.715** 1.280 0.023 29.775** 2.232
Australia 3.740 0.013 0.043 3.722 0.425

α = 1%
India 2.678 1.117 13.080** 0.146 1.118
Japan 3.087 0.485 16.498** 0.474 0.838
Taiwan 4.480* 0.014 2.193 1.601 0.669
Korea 0.294 0.294 28.784** 5.860* 0.113
Hong Kong 11.081** 0.000 17.698** 0.000 0.478
Philippines 3.075 4.261* 4.260* 9.472** 0.776
Singapore 2.038 0.735 2.038 0.014 0.735
UK 4.228* 6.776** 10.792** 4.792* 0.426
Germany 66.820** 2.000 30.993** 10.805** 0.004
Turkey 0.306 3.406 18.109** 32.768** 0.122
US 67.265** 1.400 18.109** 10.806** 2.627
Mexico 0.152 4.841* 1.042 3.829 7.294**
Brazil 18.290** 2.055 7.955** 0.104 1.145
Argentina 3.676 0.820 11.878** 7.544** 0.185
S Africa 2.310 5.760* 4.987* 14.932** 5.760*
Australia 1.349 1.932 6.833** 13.676** 2.633

α = 0.5%
India 9.146** 2.400 31.568** 0.558 2.400
Japan 7.479** 2.549 13.899** 0.022 1.459
Taiwan 16.090** 0.066 9.037** 4.860* 0.540
Korea 0.276 0.134 23.697** 8.519** 0.004
Hong Kong 21.946** 1.356 16.146** 1.356 1.356
Philippines 1.052 5.190* 15.830** 3.691 0.057
Singapore 2.146 2.492 2.146 0.543 2.492
UK 9.226** 10.850** 16.155** 3.939* 1.266
Germany 85.843** 0.420 40.516** 5.868* 1.236
Turkey 0.697 4.601* 25.963** 14.331** 0.060
US 88.247** 4.595* 30.113** 6.488* 4.600*
Mexico 2.678 5.184* 2.678 5.184* 3.632
Brazil 26.924** 0.002 17.523** 0.245 0.002
Argentina 0.000 6.717** 16.110** 6.710** 1.830
S Africa 0.045 1.897 7.397** 12.439** 1.897
Australia 0.255 1.311 11.486** 3.376 1.311
No. of violations 25 14 28 27 3

Note: The table presents statistical tests of unconditional coverage (uc) of the intraday VaR
forecasts under each competing approach. The test is asymptotically distributed asχ2with
d.f. one. The asterisks (*) and (**) denote significance at 5% and 1% levels, respectively.
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Although in the original setting of Christoffersen's (1998) LR test,
only the first lag is considered, however, as for high frequency data
used in the present study, a few further lags are worth to be tested.
Hence, in line with studymade by Chen, Gerlach, and Lu (2012) we ex-
tended the test up to four lags.

Tables 8, 9, and 10 show statistics of unconditional, independence
and conditional coverage tests, respectively for the different models at
p=95%, p=99%and p=99.5%. As a quick reference guide, the absence
of ‘asterisks’ in the tables indicates that the difference between theoret-
ical and empirical violation ratios is not statistically significant. For the
unconditional coverage test reported in Table 8 out of 48 cases (16mar-
kets × 3 quantiles) analyzed, the Standard Normal fails 25 times,
the Conditional Normal fails 14 times, the RiskMetrics fails 28 times,
the Unconditional EVT fails 27 times and the Conditional EVT fails only
3 times. Thus under this test the Conditional EVT model dominates
other models in VaR forecasting. For the independence test reported
in Table 9, the Conditional EVT model performs the best and is closely
followed by the Conditional Normal model. The performance of the
remaining three models is far behind than the former two models. For
the conditional coverage test reported in Table 10 the Conditional EVT
again performs the best. Out of 48 cases, the model fails 8 times while
the Risk Metrics model fails as high as 36 times and becomes the least
performing model.

So far we have done the backtesting analysis of the different models
using various tests. The Conditional EVT model consistently performs
the best in estimating and forecasting VaR. However, less consistency
in relative performance is evident for other models.



Table 11
Backtesting of ES (Embrechts et al. measure).

S norm Cond norm RM Unc. EVT Cond. EVT

α = 5%
India 0.210 0.044* 0.273 0.069 0.093
Japan 0.258 0.051 0.255 0.046 0.036*
Taiwan 0.180 0.018* 0.159 0.100 0.052
Korea 0.067 0.020 0.164 0.126 0.016*
Hong Kong 0.172 0.115 0.180 0.059 0.055*
Philippines 0.198 0.088 0.122 0.158 0.006*
Singapore 0.025 0.020 0.017 0.009* 0.012
UK 0.060 0.023* 0.088 0.088 0.033
Germany 0.406 0.122 0.288 0.142 0.071*
Turkey 0.191 0.089 0.320 0.537 0.056*
US 0.238 0.060 0.134 0.079 0.048*
Mexico 0.046* 0.140 0.087 0.166 0.099
Brazil 0.318 0.033 0.219 0.053 0.014*
Argentina 0.128 0.165 0.218 0.366 0.038*
S Africa 0.073 0.079 0.062* 0.203 0.087
Australia 0.016* 0.026 0.094 0.120 0.020

α = 1%
India 0.669 0.317 0.716 0.144* 0.266
Japan 0.643 0.295 0.405 0.129 0.104*
Taiwan 0.459 0.121 0.466 0.212 0.075*
Korea 0.097 0.077 0.250 0.205 0.055*
Hong Kong 0.312 0.477 0.243 0.190* 0.197
Philippines 0.299 0.341 0.384 0.211 0.060*
Singapore 0.015* 0.090 0.024 0.060 0.054
UK 0.170 0.172 0.212 0.163 0.032*
Germany 0.797 0.305 0.544 0.197 0.140*
Turkey 0.130 0.107 0.709 0.688 0.081*
US 0.367 0.276 0.208 0.079* 0.151
Mexico 0.359 0.304 0.282 0.094* 0.121
Brazil 0.596 0.289 0.468 0.061* 0.194
Argentina 0.258 0.658 0.383 0.678 0.176*
S Africa 0.051* 0.154 0.148 0.257 0.141
Australia 0.076 0.133 0.173 0.134 0.045*

α = 0.5%
India 0.932 0.421 0.906 0.160* 0.335
Japan 0.917 0.135 0.583 0.196 0.107*
Taiwan 0.537 0.185 0.501 0.191 0.079*
Korea 0.187 0.086 0.313 0.216 0.051*
Hong Kong 0.300 0.656 0.281 0.128* 0.274
Philippines 0.510 1.195 0.461 0.217 0.044*
Singapore 0.020 0.118 0.019* 0.081 0.055
UK 0.228 0.267 0.278 0.233 0.028*
Germany 1.000 0.481 0.756 0.247 0.206*
Turkey 0.339 0.315 0.913 0.799 0.071*
US 0.387 0.276 0.217 0.094 0.081*
Mexico 0.463 0.356 0.419 0.231 0.133*
Brazil 0.702 0.493 0.474 0.090* 0.321
Argentina 0.320 0.865 0475 0.928 0.280*
S Africa 0.085* 0.219 0.210 0.254 0.181
Australia 0.161 0.163 0.198 0.189 0.085*
Min value
occurences

5 3 2 9 29

Note: The table presents Embrechts et al. measure (scaled up by ×103) of the intraday ES
forecasts under each competing approach. The presence of (*) represents the minimum
value of themeasure among the approaches for each stock index under a given confidence
level.

Table 10
Backtesting of VaR (statistical tests of conditional coverage).

S norm Cond norm RM Unc. EVT Cond. EVT

α = 5%
India 16.039** 1.997 4.161 13.486** 0.707
Japan 6.147* 1.290 6.041* 3.670 1.031
Taiwan 17.499** 16.450** 19.231** 13.331** 20.096**
Korea 26.614** 0.697 1.717 20.642** 0.706
Hong Kong 3.688 17.526** 4.263 7.134* 2.347
Philippines 57.968** 1.028 11.721** 49.029** 2.430
Singapore 2.214 0.354 2.203 2.202 1.170
UK 31.207** 10.915** 14.868** 24.677** 8.577*
Germany 18.301** 33.361** 8.985* 36.148** 6.650*
Turkey 52.675** 4.353 21.475** 43.158** 3.428
US 37.965** 13.637** 7.591* 33.336** 2.433
Mexico 8.197* 2.443 0.213 5.826 8.132*
Brazil 10.789** 3.190 10.824** 13.261** 3.618
Argentina 19.215** 6.585* 4.525 15.072** 0.285
S Africa 41.926** 2.903 2.411 32.302** 4.117
Australia 15.174** 2.487 10.192** 15.156** 3.742

α = 1%
India 8.210** 1.456 16.064** 4.679 1.459
Japan 3.281 0.485 17.725** 0.799 1.570
Taiwan 37.807** 14.971** 18.606** 30.361** 15.935**
Korea 2.940 2.595 34.890** 6.382* 2.231
Hong Kong 13.142** 0.035 17.821** 0.040 1.737
Philippines 4.834 4.601 4.493 13.606** 1.547
Singapore 3.863* 0.747 2.038 0.077 0.747
UK 16.497** 7.327* 14.276** 5.241 1.271
Germany 81.471** 3.677 37.524** 34.064** 0.101
Turkey 11.853** 6.558* 22.530** 39.823** 1.240
US 80.027** 3.668 22.688** 31.109** 3.133
Mexico 1.646 5.509 3.955 4.597 7.784*
Brazil 18.688** 2.117 8.110** 2.554 1.318
Argentina 4.785 1.873 11.923** 7.875* 0.373
S Africa 4.740 6.515* 15.768** 15.226** 6.515*
Australia 3.779 2.942 11.916** 16.445** 3.527

α = 0.5%
India 12.748** 5.366 33.306** 4.940 5.366
Japan 7.548* 2.656 14.587** 1.990 1.613
Taiwan 44.850** 2.493 33.015** 27.087** 1.829
Korea 0.890 0.496 26.546** 8.552** 0.442
Hong Kong 25.181** 1.544 16.573** 1.544 1.544
Philippines 5.186 5.976 15.843** 10.274** 0.317
Singapore 2.390 2.747 2.390 0.975 2.747
UK 17.361** 10.911** 19.385** 4.140 1.622
Germany 107.764** 1.319 48.005** 12.896** 2.336
Turkey 2.822 8.673* 32.653** 23.239** 1.565
US 104.656** 8.935* 33.702** 13.756** 8.935*
Mexico 3.040 5.274 3.787 5.268 3.754
Brazil 31.005** 0.523 17.673** 0.939 0.523
Argentina 0.409 6.753* 18.713** 6.746* 1.976
S Africa 0.542 2.134 7.413* 12.465** 2.134
Australia 2.214 1.532 20.225** 7.264* 1.532
No. of violations 31 14 36 31 8

Note: The table presents statistical test of conditional coverage (cc) of the intraday
VaR forecasts under each competing approach. The test is asymptotically distributed
as χ2 with d.f. two. The asterisks (*) and (**) denote significance at 5% and 1% levels,
respectively.
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4.2.2. Backtesting of ES
To backtest the estimated ESq value, we use the measure proposed

by Embrechts et al. (2005). The standard backtesting measure for the
ESq estimates is

E1 ¼ 1
c

X
t∈κ

ϕt ð40Þ

where, ϕt=rt+1−ESq
t+1, c is the number of intervals for which a viola-

tion of VaR, i.e., rt+1 b VâRtþ1
q occurs and κ is the set of intervals for

which it happens.
Weakness of this measure is that it depends strongly on the VaR es-

timates without adequately reflecting the correctness of these values.
To correct for this, it is combined with the following measure, where
the empirical quantile of ϕ is used in place of the VaR estimates.

E2 ¼ 1
d

X
t∈η

ϕt ð41Þ

where, d is the number of periods for which ϕt is less than the empirical
quantile and η is the set of periods for which it happens.

Thus, the Embrechts et al. (2005) measure is given by

E ¼ E1j j þ E2j jð Þ=2 ð42Þ
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A good estimation of ES will lead to a low value of E. Readers are re-
ferred to Embrechts et al. (2005) for further technical details on the test
statistics.

Table 11 reports backtesting results of ES for each individualmarket. It
shows the value of themeasure (E) for 95%, 99% and 99.5% quantiles. The
minimum value of the same is marked with ‘asterisks’ for each of the
cases. It appears from the table that out of 48 cases (16 markets × 3
quantiles) analyzed, minimum value of E has been achieved 5 times by
Static Normal, 3 times by Conditional Normal, 2 times by Risk Metrics,
9 times by Unconditional EVT and as high as 29 times by Conditional
EVT. Thus in terms of number of minimum value of the measure, Condi-
tional EVT once again outperforms other competing models.

It is evident from the backtesting analysis that the Conditional EVT
model performs the best in forecasting both intraday VaR and ES. The
superiority of the Conditional EVT model should come as no surprise.
The ARMA (p1 ,q1) mean equation accommodates the autoregression
in returns. The GARCH (p2 ,q2) component captures conditional volatil-
ity clustering. The EVT component explicitly models the heavy tails of
the standardized residuals. Taken together, the features ensure that
quantile estimates from the ARMA–GARCH–EVT model alternatively
called Conditional EVT model at any given time reflect the most recent
and relevant information.
5. Conclusion

The purpose of this paper has been to make a comparative study of
predictive ability of various models in estimating intraday VaR and ES.
The main emphasis has been given to the Extreme Value methodology
and to evaluate how well the Conditional EVT model performs in
modeling the tails of distributions and in estimating and forecasting in-
traday VaR and ESmeasures. In order to investigate the same, the 5min
price series of sixteen stock markets across Asia, Europe, the United
States, Latin America, Africa and Australia have been considered. The
preliminary analysis of the data shows the 5 min returns series used
in this study have properties that are consistent with the stylized facts
of high frequency financial returns reported in the literature. They
are all fat-tailed, slightly skewed and have a zero mean. Furthermore,
there are linear dependence in returns and the series exhibit high vola-
tility, and volatility clustering. Most importantly, the series displays
strong periodicity patterns in intraday volatility. The findings suggest
the exploration of the ARMA–GARCH–EVT to forecast intraday VaR
and ES. Since the GARCH-type models can be corrupted by intraday
periodic patterns, we use the deseasonalizedfiltered returns to estimate
the volatility model instead of considering raw returns. However the
VaR and ES are later computed for the original returns by re-including
the intraday periodicity component. To compare the accuracy of the
Conditional EVTwith other alternatives, we have donebacktesting anal-
ysis on out-of-sample return series. The best performing model in esti-
mating VaR is found to be the Conditional EVT and interestingly the
same model performs the best in forecasting ES too. The Conditional
EVT model that captures the time series properties of both mean and
volatility of returns, as well as explicitly modeling the tails of the distri-
bution, may offer advantages during the period of market turmoil.
Thus risk managers may benefit from adopting the sophisticated
ARMA–GARCH–EVT, alternatively called the Conditional EVT model.
The study is useful for market participants (such as intraday traders
and market makers) involved in frequent intraday trading in such
equity markets.

Appendix A. Choice of starting values for conditional mean and
variance estimation

As mentioned in note 4, we have chosen the starting values as the
unconditional estimates of mean and variances of the in-sample return
series. It can be empirically shown that the estimates of conditional
means and variances are robust enough with respect to the choice of
any starting values. This has been illustrated using different starting
values to estimatemean and variance for India.We consider four differ-
ent initial values for mean and variance as stated below:

i) Unconditional mean and variance of entire in-sample return
series

ii) Zero mean and zero variance
iii) Unconditional mean and variance of first 10 observations
iv) Unconditional mean and variance of first 100 observations.

We have plotted the conditional mean and variance estimates in
Fig. 4.1 and 4.2 respectively, with different initial values. It appears from
both the figures that as we move forward from the starting period, the
deviation between the estimates for alternative starting values dimin-
ishes exponentially and after a certain period the estimates converge to
a single line, hence the importance of the initial values chosen declines
to zero. We have performed the same exercise for other return series as
well leading to same conclusion, but not shown here for brevity.



54 M. Karmakar, S. Paul / International Review of Financial Analysis 44 (2016) 34–55
Appendix B. Threshold selection for the GPD approach

To select the threshold (i.e. choice of k) optimally, we perform a
small simulation study following McNeil and Frey (2000). Since, the
observed distribution of model residuals in every return series exhibits
fat-tails and excess kurtosis, we generate random samples from
Student-t distribution where sample size corresponds to the window
length we use for in-sample estimation. The degrees of freedom are
calculated from the moments of model residuals. Now, we estimate
the quantiles from the series with various values of k using GPD. We
restrict our attention to values of k such that k N window length*(1-q),
so that the target quantile is beyond the threshold. For each return
series, we estimate bias and the mean squared errors (MSE) using
Monte Carlo estimates based on 1000 independent samples. For exam-
ple, we estimate bias and MSE ðẑq;kÞ by

Bias ¼ 1
1000

X1000
j¼1

ẑ jð Þ
q;k−zq
MSE ẑq;k
� � ¼ 1

1000

X1000
j¼1

ẑq;k
jð Þ−zq

	 
2

where, ẑq;k
ð jÞ represents the quantile estimate obtained from the j-th

sample and zq is the theoretical quantile estimates for Student-t
distribution.

We have calculated the bias and MSE of GPD estimator of the 0.95
quantile against k for all the time series but for brevity the results are re-
ported only for India. The results for the t-distribution with 5 degrees of
freedom (calculated based on residual series of India) are depicted in
Fig. 5.1 and 5.2 which correspond to bias-exceedances and MSE-
exceedances, respectively.

From the figures it is quite evident that minimum of bias and
MSE could be achieved when number of exceedances (k) varies from
750 to 1300 (roughly, 8% to 14). Therefore, while choosing threshold
level subjectively from MEF plot, we make sure that the number of
exceedances does not fall beyond this range.
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