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ABSTRACT

This paper applies the Least Absolute Shrinkage and Selection Operator (LASSO)
to make rolling one-minute-ahead return forecasts using the entire cross-section of
lagged returns as candidate predictors. The LASSO increases both out-of-sample fit
and forecast-implied Sharpe ratios. This out-of-sample success comes from identifying
predictors that are unexpected, short-lived, and sparse. Although the LASSO uses a
statistical rule rather than economic intuition to identify predictors, the predictors
it identifies are nevertheless associated with economically meaningful events: the
LASSO tends to identify as predictors stocks with news about fundamentals.

FINANCIAL ECONOMISTS HAVE BEEN LOOKING for variables that predict future stock
returns for as long as there have been financial economists. For example, Banz
(1981) uses market cap to predict future returns, Jegadeesh and Titman (1993)
use lagged returns, and Cohen and Frazzini (2008) use customer earnings
surprises. To find these sorts of variables, researchers have to solve two distinct
problems: identification and estimation. First, they have to identify a subset of
candidate predictors; then, they have to estimate the quality of these predictors.

In the past, researchers typically reached for a different set of tools when
working on each of these problems, using their intuition to identify predic-
tors and statistics to estimate quality. This two-pronged approach works well
when you are only looking for steady long-lived predictors. For example, Cabot
Oil & Gas’s lagged return predicted its future return at the one-minute horizon
throughout October 2010. Because it formed such a steady long-lived predictive
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relationship, a researcher could intuit this variable and then estimate its qual-
ity with an ordinary least squares (OLS) regression

ree=8+B % @ t+e—e £e{0,...,L—1}, (1)

where r; is Cabot’s minute-¢ return, & is its mean return, L is the length of
the estimation window, x;_; is Cabot’s lagged return standardized to have zero
mean and unit variance during the estimation window, and j is the associated
OLS coefficient.

But, modern financial markets are big, fast, and complex. Predictability now
exists at scales that are not easy for a researcher to intuit. For instance, the
lagged returns of Family Dollar Corp. were a significant predictor for 20% of the
oil-and-gas industry—including Cabot Oil & Gas—during a 50-minute stretch
on October 6, 2010. Can a researcher really fish this particular variable out of
the sea of spurious predictors using only his intuition? Of course not.

And, without a clear idea of which candidate predictors to test, a researcher
cannot use the OLS regression in equation (1) to estimate the amount of cross-
stock predictability. There were 2,191 NYSE-listed stocks in October 2010. So,
using an OLS regression to estimate the relationship between Cabot’s current
return and the lagged returns of every one of these candidate predictors would
require at least 2,191 observations—or, nearly six trading days! A researcher
cannot wait six days to identify a signal that lasts less than an hour.

With this type of problem in mind, we apply the Least Absolute Shrink-
age and Selection Operator (LASSO) rather than intuition to identify unex-
pected short-lived predictors such as the lagged returns of Family Dollar Corp.
We find that using the LASSO increases both out-of-sample fit and forecast-
implied Sharpe ratios, and we show that this out-of-sample success comes from
identifying predictors that are unexpected, short-lived, and sparse. Finally,
we document that these predictors are often the lagged returns of stocks with
news about fundamentals. In other words, although the unexpected short-lived
predictors that the LASSO identifies are not easy to intuit, they are still eco-
nomically meaningful.

The LASSO. We begin our analysis by describing both how the LASSO works
and why we use it. We are motivated by a simple observation about the limit
of human intuition. As researchers, we cannot use our intuition to identify
predictors that are sufficiently unexpected and short-lived—at some point, our
brains just do not work fast enough. So, to incorporate these sorts of signals
into our return forecasts, we need some other way to solve the identification
problem described above. And, bringing an additional assumption to bear on
the data-generating process for returns is one way to do this.

Our approach is to assume that there are only a handful of important predic-
tors at any one point in time—that is, to bet on sparsity. Morally speaking, if
only S « 2,191 predictors are important for forecasting Cabot’s returns, then
you should need only a few more than S observations to identify and esti-
mate this sparse set of predictors. A researcher can leverage this assumption
by using the LASSO. This is a penalized-regression procedure that sets all
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OLS coefficients weaker than its penalty parameter, A, to be exactly 0. Be-
cause it does not have to worry about estimating these weak coefficients, the
LASSO can estimate the remaining strong coefficients using far fewer obser-
vations. So, if there are only a handful of important predictors at any one
point in time, then we can use the LASSO to incorporate unexpected short-
lived signals, such as the lagged return of Family Dollar Corp., into our re-
turn forecasts in a way that would not be possible using an unpenalized OLS
regression.

Out-of-Sample Performance. After describing how and why we use the
LASSO to bet on sparsity, we next investigate whether this bet pays off. To
do this, we evaluate one-minute-ahead return forecasts for a randomly chosen
subset of 250 NYSE-listed stocks on each trading day from January 2005 to
December 2012. As a benchmark, we start with forecasts made via OLS re-
gressions that include only steady long-lived predictors, such as a stock’s own
lagged returns or the lagged returns on the market. In our main specifications,
we study one-minute-ahead return forecasts created using three lags of various
steady long-lived predictors, but the exact number of lags does not qualitatively
affect our results.

We then apply the LASSO to make these same one-minute-ahead return
forecasts using the lagged returns of all 2,000+ NYSE-listed stocks during the
previous three minutes as candidate predictors. We find that using the LASSO
in addition to a standard benchmark model increases out-of-sample fit by at
least AR? = 1.2 percentage points relative to just using the benchmark model
by itself. A 1.2-percentage-point increase might seem small, but remember
that we are making one-minute-ahead return forecasts. And, at short hori-
zons, small increases in “R? statistics can generate large benefits for investors”
(Campbell and Thompson (2008, p. 1526)). To highlight this point, we convert
the LASSO’s one-minute-ahead return forecasts into a forecast-implied trad-
ing strategy and document that this forecast-implied strategy generates an
annualized Sharpe ratio of 1.8 net of trading costs.

It is important to emphasize two things about these results. The first is
that we are running out-of-sample tests. It should not be surprising that the
LASSO has better in-sample fit than an OLS regression. The LASSO can
choose from over 3- N ~ 6,000 candidate predictors; in a 30-minute estima-
tion window, an OLS regression is restricted to fewer than 30. But, there is
no guarantee that the LASSO’s better in-sample fit will translate into better
out-of-sample fit. This will only happen if the cross-section of returns actu-
ally contains a sparse collection of S < 30 signals. If there are no signals to
be found or if there are more than 30 signals, then using the LASSO will not
help.

The second is that our results do not imply that researchers should use the
LASSO instead of the standard two-pronged approach—that is, instead of their
intuition. As a researcher, if you can use your economic intuition to identify
a steady long-lived predictor, such as a stock’s own lagged returns, then an
OLS regression is the right way to incorporate this predictor into your return
forecast (Abadie and Kasy (2017)). But, the Bible does not say that all sources
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of return predictability should make intuitive sense.! And, the fact that using
the LASSO and a benchmark model increases out-of-sample fit relative to just
using the benchmark model suggests that if researchers restrict their attention
to steady long-lived predictors that they can suss out using nothing more than
their intuition, then they will be ignoring important sources of predictability
at the one-minute horizon.

Predictor Analysis. After seeing that the LASSO increases out-of-sample fit,
a natural next question is: What do the predictors selected by the LASSO
look like? Consistent with our original motivation, we find that the predictors
selected by the LASSO are unexpected, short-lived, and sparse.

We begin by looking at why the predictors are unexpected. When we examine
the LASSO’s cross-validated penalty parameter, we find that it has an average
value of 2.5% per month. In other words, the LASSO ignores any predictor
weaker than 2.5% per month when making its one-minute-ahead return fore-
casts. This lower bound is twice as large as well-known predictors at the weekly
and monthly horizon documented in the academic literature (McLean and
Pontiff (2016), Harvey, Liu, and Zhu (2016), Linnainmaa and Roberts (2017)).
As a result, there is little relation between the predictors identified by the
LASSO each minute and existing predictors documented in the academic lit-
erature, which makes the LASSO’s choice of predictors seem unexpected. In
addition, the predictors selected by the LASSO are also short-lived and sparse.
Less than 5% of the predictors selected by the LASSO are used for more than
15 minutes in a row. And, on average the LASSO uses the lagged returns of
only 12.7 other stocks as predictors when making its return forecast for each
stock.

Economic Origins. We conclude our analysis by investigating the economic,
rather than statistical, origins of the LASSO’s success. This is important be-
cause the LASSO uses a purely statistical rule to identify candidate predic-
tors that are too unexpected and short-lived to be pinned down by economic
intuition alone. And, because it does not rely on a researcher’s intuition, the
LASSO’s increase in out-of-sample fit could in principle have nothing to do with
economic fundamentals. For example, it could be the case that the LASSO’s in-
crease in out-of-sample fit comes from identifying statistical artifacts. But this
is not what we find in the data. We document that the LASSO tends to identify
as predictors the lagged returns of stocks with news about fundamentals. In
other words, although the unexpected short-lived predictors that the LASSO
identifies are not easy to intuit, they are still economically meaningful.

Related Literature. This paper builds on several strands of the asset-pricing
and statistics literature. To start with, our paper relates to work on return
predictability (McLean and Pontiff (2016), Harvey, Liu, and Zhu (2016), Lin-
nainmaa and Roberts (2017)). Campbell and Thompson (2008) show that many
of the predictors documented in the academic literature work much better in-
sample. And, DeMiguel, Garlappi, and Uppal (2009) document that simpler

1 Original quote by Enrico Fermi: “The Bible does not say that all laws of nature are expressible
linearly” (Ulam (1976, p. xxiii)).
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predictive regressions perform better out-of-sample due to overfitting. The
LASSO avoids this overfitting problem by using a penalty function that re-
moves all but the strongest predictors.

Our paper also relates to work on the role of sparsity in financial economics.
For example, Gabaix (2014) takes a top-down approach, proposing that traders
prune away the least important predictors when forming mental models by
having a preference for sparsity and internally imposing an ¢; penalty. By
contrast, Chinco (2017) takes a bottom-up approach, showing that, if traders
want to uncover sparse signals in market data, then there are information-
theoretic limits to how quickly they can interpret these signals regardless of
what mental model they are using. Either way, this paper gives evidence that
there are sparse signals for traders to find in the cross-section of minute-by-
minute returns.

In addition, this paper builds on a large body of work looking at the per-
formance of penalized regressions, such as the LASSO. The LASSO was first
introduced in Tibshirani (1996). See Hastie, Tibshirani, and Friedman (2001)
for a general introduction. Meinshausen and Yu (2009) show how LASSO-type
estimators extend to settings with correlated right-hand-side variables.

There are several excellent papers applying these ideas to topics in financial
economics. For example, DeMiguel et al. (2009) explain why norm-constrained
estimators will perform better out-of-sample in the presence of estimation er-
ror. Both Freyberger, Neuhierl, and Weber (2017) and Feng, Giglio, and Xiu
(2017) use the LASSO to identify characteristics related to the cross-section
of expected returns at the monthly horizon. Bryzgalova (2017) develops a new
model-specification test by imposing an ¢;-penalty function. And, Kozak, Nagel,
and Santosh (2017) show that using ¢;- and ¢2-penalized regressions to forecast
returns can increase forecast-implied Sharpe ratios using monthly data.

Our paper differs from these other financial applications of the LASSO in
an important way. These papers are using the LASSO to choose between var-
ious predictors that have already been identified by other researchers using
the standard two-pronged approach. By contrast, we are studying a situation
where the standard two-pronged approach simply does not apply. A researcher
cannot use his intuition to identify candidate predictors that are sufficiently
unexpected and short-lived. And, without a clear idea of which candidate pre-
dictors to test, a researcher cannot use an OLS regression to incorporate these
cross-stock signals into his return forecasts. So, we are suggesting the LASSO
should be used as a complement to existing methods—that is, as a way for
researchers to analyze unexpected short-lived predictors that they would not
otherwise have access to using existing methods.

Finally, our paper relates to the literature looking at the relationship between
news and asset prices. Brogaard, Hendershott, and Riordan (2014) show that
algorithmic traders’ orders predict price changes over very short horizons and
are correlated with macroeconomic news announcements. And, Manela and
Moreira (2017) use news to form an uncertainty index and show that it is related
to expected returns. Theoretical models of algorithmic trading (e.g., Hoffman
(2014), Foucault, Hombert, and Rosu (2016), Du and Zhu (2017)) focus on this
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ability to react to news announcements faster for individual firms. By contrast,
our results suggest that the LASSO’s success comes from quickly identifying
the unexpected consequences of news announcements for other firms.

Notation. Below, we use greek letters to denote in-sample parameter values,
a superscript star* to denote a parameter value from the true data-generating
process, a hat to denote an in-sample OLS estimate of the true parameter value
during a particular 30-minute estimation window, and a tilde to denote the
corresponding in-sample LASSO estimate; although these in-sample estimates
are functions of the particular 30-minute estimation window they are estimated
in, we do not include an estimation window subscript to avoid clutter. We use
boldface characters to denote vectors. Finally, we use a bar to denote out-of-
sample parameter estimates.

I. The LASSO
We now outline both how the LASSO works and why we use it.

A. Motivation

To see why we use the LASSO to make one-minute-ahead return forecasts,
consider the following data-generating process for the n'* stock’s return in
minute ¢.

Data-Generating Process. Suppose that the n'? stock’s return in minute ¢
could be related to the lagged returns of any of the other N stocks in the
market during the previous three minutes:

3N
Fue =t Y Boy  Awie1 ), 2)

n'=1

In the equation above, o, is the mean return of the n'" stock, and ¢}, , is a noise
term with E[e},,] = 0 and Varle},,] = 02. Since we are considering as predictors
the lagged return of each NYSE-listed stock during the previous three minutes,
we now use x,; ;1 to denote the value of 1 of these 3 - N predictors standardized
to have zero mean and unit variance during the estimation window. The pa-
rameter g is then the predictive power of the n'" predictor for the n'* stock’s
returns. In our empirical analysis, we will be making one-minute-ahead re-
turn forecasts for many different stocks, not just for Cabot Oil & Gas. So, from
now on, we include an n subscript to denote which stock we are interested in
forecasting.

Unexpected and Short-Lived. If the predictive relationship embodied by 8;
is steady and long-lived, then it is reasonable to think that a financial economist
could intuit this connection. After all, researchers have used their intuition to
uncover hundreds if not thousands of cross-sectional return predictors (McLean
and Pontiff (2016), Harvey, Liu, and Zhu (2016), Linnainmaa and Roberts
(2017)). And, if a researcher can intuit a candidate predictor, then he can use
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an OLS regression to estimate the quality of this predictor. This is the standard
two-pronged approach to finding predictors mentioned in the introduction.

But, if a researcher cannot use his intuition to narrow down the list of can-
didate predictors, then an OLS regression is no longer a viable option. For
example, to estimate all 3- N of the cross-stock predictive relationships in
equation (2) using an OLS regression, you would have to solve the optimization
problem

2

1 L-1 3-N

A 2 def .

Qp, ﬂn = argmin E . Z 'nt—t — Op — Z ﬂn,n’ * X t—(e+1) s 3)
an, By, =0 =1

where B, = [Bn1- - BnanlT is the (3- N x 1)-dimensional vector of slope coeffi-
cients used to forecast the returns of the n'" stock.

This multivariate analogue to equation (1) is ill-posed when there are more
parameters to estimate than observations to estimate them with (3- N + 1) >
L. There are roughly N = 2,000 NYSE-listed stocks at any point in time, and
2,000 minutes is roughly six trading days. So, if the cross-stock signal repre-
sented by g, does not stick around for at least 18 trading days, then there
is no way for a researcher to estimate it using an OLS regression without
making some sort of intuitive leap. If a researcher wants to use such an un-
expected short-lived predictor, then he needs to find some other way of solving
his identification problem that shortens the required estimation window.

Betting on Sparsity. One popular approach is to assume that there are only
a handful of strong predictors at any point in time—that is, to bet on sparsity
(Hastie, Tibshirani, and Friedman (2001)). Intuitively, it should not require all
3 - N observations to estimate a coefficient vector containing mostly zeros. If
S, denotes the number of predictors for stock n that are more extreme than
)"n;

3N
def
S 2 Lyssi=rals 4)
n'=1

then betting on sparsity with an L-minute estimation window means assuming
that

S, ef{l, 2 ...,L—1}. (5)

It is important to note that this bet is not guaranteed to succeed. There are
two ways for the data to be nonsparse. First, if S, ; = 0, then there are no
predictors to find. Second, if S, ; > L, then the predictors are dense, meaning
that there is no way to consistently estimate the relationship between all these
predictors and the n'" stock’s returns in an L-minute estimation window no
matter what approach you take. Either way, if the predictors are not sparse,
then a researcher’s bet on sparsity will not pay off.

Why Sparsity Helps. Before getting to any more math, let us pause for a
moment and build some intuition about why betting on sparsity might help.
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Suppose you are standing on a beach, and you are trying to figure out whether
a dark spot you see on the horizon is a sailboat or a cloud. A natural human
reaction in this situation is to squint. But, why are our brains wired this
way? After all, by squinting and slightly closing your eyes, you are removing
information and making it harder to see colors and quick movements.

The key insight is that colors and quick movements are not going to tell
you much about the nature of the mysterious blob on the horizon. Sailboats
and clouds are both going to be dark and slow-moving at this distance. So, in
essence, squinting penalizes these weak predictors. When you squint, the only
things left for you to see are the most relevant details for the question you are
trying to answer: Is the blob triangular? Does it have a mast? And, by ignoring
extraneous details, you will be able identify the nature of the object on the
horizon at a much greater distance.

But this approach will only work if you can answer your question using only
a handful of strong predictors. For instance, squinting will do you no good
when trying to figure out whether the sailboat is flying a British or American
flag. Both of these flags use the same colors. Distinguishing between these two
possibilities will require many subtle cues about how the colors are organized.
No amount of squinting will help you resolve these subtle differences. You will
just have to wait until the sailboat gets closer and get a better look.

Subset Selection. Most economists are familiar with the Akaike information
criterion (AIC; Akaike (1974)) and the Bayesian information criterion (BIC;
Schwarz (1978)). These criteria are examples of a particular way of solving the
selection problem known as best-subset selection. They both impose a penalty
that eliminates weak predictors—just like in the example above—Dby solving
the following optimization problem for different choices of A,,:

2

1 L-1 3-N 3-N
(Ix?llgr: z : (X(; (rn,tl — Qp — zzlﬁn,n’ : xnﬁt—(@-‘rl)) + An - /2:1 1{/3n,n’¢0} : (6)
= n= n'=

If ), = 2 - 0., then solving equation (6) is equivalent to using the AIC; whereas,
if A, = 2.0, -log(L), then it is equivalent to using the BIC (Foster and George
(1994)).

So, why not use the AIC or the BIC to identify unexpected short-lived pre-
dictors in the cross-section of returns? The problem with these criteria is that
they “are highly impractical” (Candes and Plan (2009, p. 2146)) when choosing
among many variables. When solving the optimization problem in equation (6),
there is a fixed 1, penalty for moving 8, ,, any distance away from zero, no mat-
ter whether it is an inch or a mile. And, this hard threshold implies that the
optimization problem in equation (6) is nonconvex and thus NP (nondetermin-
istic polynomial-time) hard (Natarajan (1995)), requiring an exhaustive search
over all possible subsets of 23 predictors.

To give a sense of the difficulty of this combinatorial search problem, note
that most WiFi networks are deemed secure because cracking a 128-bit pass
code would involve a brute-force search over 2'28 parameter values. Such a
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search would take 1 quintillion years (Arora (2012)). So, running more than
26.000 geparate regressions is out of the question.

Convex Relaxation. The difficulty of this combinatorial-search problem is
what brings us to the LASSO. The LASSO offers a way to solve this subset-
selection problem that gets around the computational roadblock associated
with AIC and BIC. The LASSO does this by changing the penalty function in
equation (6) slightly:

1 Lt 3.N 2 3.N

~ A def .

Up, ﬂn = argmin Z : Z I'nt—t — Op — Z IBn,n’ c X t—(0+1) + An - Z |Brr |
on:Bn =0 n=1 =1

(7

The optimization problem in equation (6) uses the penalty 15 .0 while the
problem in equation (7) uses the penalty |8, ,/|. This is the only difference
between the two optimization problems. But, this difference convexifies the
problem (Efron and Hastie (2016, p. 308)). And, “if we can formulate a problem
as a convex optimization problem, then we can solve it efficiently . .. with only
a bit of exaggeration, we can say that, if you formulate a practical problem as a
convex optimization problem, then you have solved the original problem” (Boyd
and Vandenberghe (2004, p. 9)).

B. Implementation

With this motivation in mind, let us now examine the details of how we use
the LASSO to make one-minute-ahead return forecasts in rolling 30-minute es-
timation windows using the entire cross-section of lagged returns as candidate
predictors.

LASSO Forecasts. Prior to the start of each trading day, we choose 250 stocks
at random. Then, for each stock » in this collection of 250, we solve the opti-
mization problem in equation (7) in R using the glmnet package (Friedman,
Hastie, and Tibshirani (2010)) in rolling (L = 30)-minute estimation windows.
As predictors, we consider the lagged returns of all NYSE-listed stocks during
the previous three minutes, including the lagged returns of stock n itself. This
means solving an estimation problem with 3 - N ~ 6, 000 right-hand-side vari-
ables using only 30 observations, something that would clearly be impossible
within an OLS-regression framework. We generate a one-minute-ahead return
forecast, f,%f‘sso, for the n" stock’s return in minute (¢t + 1) by applying the
LASSO-coefficient estimates from the previous 30 minutes to the most recent
three minutes of data:

90 =g +Z Buow + Xt 1. (8)

Figure 1 summarizes this procedure for creating one-minute-ahead return
forecasts.
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' Estimate coefficients 1 Use estimated coef-
. using data from ficients to build fore-
+ previous 30 minutes. rcast for 31st minute.

Lot —29 t—28 ! AA ' t—2 t—1 t t+1
,1130,1131’1132 1157,1158,1159*1200

Figure 1. Estimation and forecast timing. To make our one-minute-ahead forecast for the n®
stock’s return in minute (¢ + 1) = 12:00, we first estimate a model using data from the previous
30 minutes, {11:30, ..., 11:59}. Then, we apply the estimated coefficients to the most recent three
minutes of data, {11:57, 11:58, 11:59}. We use fi1:23 LASSO 4 denote this forecast for the nt! stock’s
return in minute 12:00 because it only uses mformatlon up to minute 11:59.

Penalty Parameter. There is a clear choice for A, in best-subset selection
procedures like the AIC and the BIC. The LASSO convexifies these problems,
making them computationally tractable in settings with thousands of predic-
tors. But outside of special cases, there is no theoretically optimal value for
An when using the LASSO. So, we follow the standard procedure (Hastie, Tib-
shirani, and Friedman (2001)) and choose A, on a stock-by-stock basis in each
30-minute estimation window via K-fold cross-validation with K = 10 folds.
This is the default setting for the cv.glmnet function.

Alternative Penalties. The LASSO is not the only way to convexify the best-
subset selection problem in equation (6). Researchers have proposed alternative
procedures, such as the adaptive LASSO (Zou (2006)) or the elastic net (Zou
and Hastie (2005)). These procedures represent interesting variations on the
LASSO, but we focus on the LASSO for a simple reason: we want to show that
it is possible for researchers to incorporate unexpected short-lived signals into
their existing return forecasts using a statistical selection rule rather than
their intuition. To accomplish this goal, it is best to use the simplest possible
version of one of these rules—namely, the LASSO.

Benchmark Forecasts. Finally, in Section II, we show that using one-minute-
ahead return forecasts from both the LASSO and a standard benchmark model
increases out-of-sample fit relative to just using the return forecast from the
benchmark model. To construct these benchmark forecasts, we run OLS regres-
sions that include a wide range of steady long-lived predictors. We estimate
each of these regressions using the exact same rolling 30-minute estimation
windows described above. We then compute our benchmark one-minute-ahead
return forecasts, mek by applying the resulting OLS estimates to the most
recent three minutes of data. In our main specifications, we use benchmark
models with three lags of each predictor, but we show that the exact number of
lags does not qualitatively affect the results.

II. Out-of-Sample Performance

This section investigates whether it pays to bet on sparsity with the LASSO.
This means testing whether using both the LASSO and a benchmark model to
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forecast returns increases out-of-sample fit relative to just using the benchmark
model.

A. Data Description

Our tests incorporate data from several different sources.

One-Minute Returns. We obtain data on the one-minute returns of NYSE-
listed stocks from the Trade and Quote (TAQ) database. Our sample includes
every trading day from January 2005 to December 2012. We remove stocks
with prices below $5 at the previous day’s close. While we consider the entire
cross-section of NYSE-listed stocks as candidate predictors, we only make one-
minute-ahead return forecasts for a randomly selected subset of 250 stocks
each day for computational reasons.

Because we use a 30-minute estimation window and three lags, the first one-
minute-ahead return forecast each day is at ¢ = 10:04 am. To avoid distortions
due to the NYSE closing auction, we also drop the last minute of each trading
day from our sample. This means that we make 356 separate one-minute-
ahead return forecasts, ¢t € {10:04 am, ..., 3:59 pm}, for each of the randomly
selected 250 stocks during each day. In other words, each stock-day contains
356 - 250 = 64,000 forecasts.

Benchmark Predictors. We consider multiple steady long-lived predictors
when making our benchmark one-minute-ahead return forecasts. In autore-
gressive specifications, a stock’s lagged returns come from the TAQ data de-
scribed above. When a specification involves the lagged returns on a portfolio
(market, size, or value), we use the one-minute returns of exchange-traded
funds (ETFs). The market return corresponds to the return on the iShares
market ETF. And, size and value returns correspond to the returns on the
iShares Russell 1000 and 2000 value and growth ETFs. When a specification
involves lagged industry returns, we construct a value-weighted return for the
corresponding three-digit SIC industry.

Control Variables. We look at how the LASSO’s increase in out-of-sample fit
varies across stocks with different firm characteristics using data from CRSP.
Market capitalization is defined at the close of the previous trading day. Trading
volume is defined as the total trading volume on the previous trading day.
Return volatility is defined as the volatility of one-minute returns during the
previous trading day. The bid-ask spread is the average bid-ask spread during
the previous trading day.

Daily Factors. Finally, to compute the abnormal returns, we use data on the
daily excess returns of factor portfolios from Kenneth French’s Web site.?

B. Out-of-Sample Fit

Before thinking about increases in out-of-sample fit, let us start by asking:
How much return variation can the LASSO explain? This estimate will provide

2 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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an upper bound on the LASSO’s increase in out-of-sample fit because some of
the return variation explained by the LASSO might already be explained by
an existing benchmark model.

Econometric Approach. To answer this question, we estimate a suite of pre-
dictive regressions:

_ — Lf\SSO 7ﬁ,LLASSO
Tntr1 = Gy + by - ("—g,%gm"h) +entt1. 9
In equation (9),7,,1+1 is the n'® stock’s realized return in minute (¢ + 1), /4559 is
the LASSO’s one-minute-ahead return forecast for minute (¢ + 1), m455° and

gLASSO denote the mean and standard deviation of the LASSO’s one-minute-
ahead return forecasts for the n" stock on a given day, @, and b, denote out-of-
sample regression coefficients, and e, ;1 is the forecasting error. We estimate
a separate regression for each of the 250 randomly selected stocks on a given
trading day, which means that each regression contains 356 observations. And,
we normalize the LASSO’s one-minute-ahead return forecasts to have zero
mean and unit variance so that we can compare the slope coefficients, b,,
across different regressions.

For each predictive regression, we then measure the fraction of the variation
in a stock’s one-minute returns on a given day that is explained by the LASSO
using the adjusted-R? statistic. At one extreme, adjusted-R? = 100% means
that the LASSO’s one-minute-ahead return forecast, ’{J?sso’ explains all of the
variation in a stock’s returns; whereas, at the other extreme, adjusted—R,% = 0%
means that /50 explains none of this variation. Appendix A illustrates this
setup with numerical simulations.

Empirical Results. Table I summarizes the results of the suite of predictive
regressions that we run. On average, the LASSO’s one-minute-ahead return
forecast explains 2.467% of the variation in a stock’s one-minute returns on
a given day. The 95% confidence interval shows that this point estimate is
statistically different from zero. We two-way cluster the standard errors at the
stock-day level to account for the possibility that the LASSO might do a better
job of forecasting returns for particular stocks or on particular trading days.
The figure to the right of Table I reveals that, while there is some time series
variation in the LASSO’s out-of-sample fit, the LASSO explains at least 1% of
the variation in returns during every month in our sample.

C. Increase in Out-of-Sample Fit

Of course, we are not directly interested in the LASSO’s out-of-sample fit
in an absolute sense. Our goal is to show that using the LASSO in addition
to a benchmark model increases out-of-sample fit relative to just using the
benchmark model. We are interested in increases in out-of-sample fit, not the
level of out-of-sample fit itself.

Illustrative Example. Consider an example showing why this distinction is
important. Recall that the LASSO can identify a stock’s own lagged returns as
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Table I
Out-of-Sample Fit, The LASSO

This table presents the results of the LASSO out-of-sample fit. The regressions are run on 250
randomly chosen stocks on each trading day from January 2005 to December 2012. The panel to the
left reports the population averages for the regression coefficients and the adjusted-R%. Numbers
in parentheses are standard errors clustered by stock-day. 95% CI reports 95% confidence intervals
for population averages. The figure to the right plots the average adjusted-R2 each month, and
the dashed line represents the time series average, Rﬁ = 2.467%. Gray bands denote the 99.9%
confidence interval computed using standard errors clustered by stock-day. The results indicate
that, on average, the LASSO’s one-minute-ahead return forecast explains 2.467% of the variation
in a stock’s returns on a given day. And, the LASSO explains at least 1% of the variation in returns
during every month in our sample.

Mean 95% CI 5% -
Gy, [%/m) 0.002 . 4% -
i (0.002) 7.
br [%/m] ((1):61515?%) [1.399,1.467] 2% -
R2 % 2467 [2.414,2.520] 1%-
(0.027) 05 ‘06 ‘07 08 09 10 ‘11 ‘12 13

candidate predictors. So, in principle, the LASSO could be doing nothing more
than replicating the one-minute-ahead return forecast of an autoregressive
model with three lags. If this were the case, then the LASSO would have
significant out-of-sample fit in an absolute sense. But, it would not provide
any additional information over and above what was already contained in the
AR(3) model. To justify using the LASSO, we need to show that the 2.467%
of the return variation explained by the LASSO is not already explained by
an existing benchmark model. In other words, we need to show that using the
LASSO increases out-of-sample fit.

Econometric Approach. We do this by elaborating on the methodology de-
scribed above. First, we estimate the out-of-sample fit of a benchmark model
just like we did for the LASSO:

Bmk _ 7 Bmk

Pt =+ 80 (B )+ enpin, (10)

In equation (10), 7.1 is the n'® stock’s realized return in minute (¢ + 1), /2K

is the one-minute-ahead return forecast for this stock’s minute-(¢ + 1) return
generated by some benchmark model, mP™ and 2™k denote the mean and stan-
dard deviation of the benchmark model’s one-minute-ahead return forecasts,
a, and ¢, are out-of-sample regression coefficients, and e, ;1 is the benchmark
forecasting error.
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Then, to see if the LASSO increases out-of-sample fit relative to this bench-

mark model, we estimate a second specification that includes both fL4SS9 and
Bmk.
nt
_ - Lf\SSO _ﬁLLASSO _ Btmk _ﬁ,LBmk
Tnt+1 = Qn + by - (SIA—SS(;L) +Cn - <SB—mkn) +enti1- (11

If including the LASSO’s one-minute-ahead return forecast increases the
adjusted-R? statistic, AR? = R2Both _ R2Bmk then we know that the LASSO
must be capturing new information that is not already present in the bench-
mark model’s one-minute-ahead return forecast.

At one extreme, if the LASSO and the benchmark model are using totally
different information sets to create their respective one-minute-ahead return
forecasts, then we will estimate A R? = 2.467 percentage points. At the other ex-
treme, if the LASSO is just replicating the one-minute-ahead return forecast of
the benchmark model, then we will estimate A R? = 0 percentage points. We are
working with increases, not levels. And because we are studying percentage-
point increases in adjusted-R?, we can use the analysis in Giacomini and White
(2006) to evaluate statistical significance (see Appendix B).

Empirical Results. Table II summarizes the LASSO’s increase in out-of-
sample fit relative to a variety of different benchmark models. The first row
reveals that one-minute-ahead return forecasts made using an AR(3) model
explain R2B™k = 7.365% of return variation on average. The out-of-sample fit
of this benchmark model is larger than the LASSO’s out-of-sample fit. But we
are not suggesting that researchers should use the LASSO instead of their
preferred benchmark model. We are suggesting that researchers should use
the LASSO in addition to their preferred benchmark model. And, by using the
LASSO in addition to this benchmark model, we estimate that a researcher
could explain an additional AR? = 1.185 percentage points of the variation in
returns. The Giacomini and White’s (2006) p-value shows that such a large
increase in out-of-sample fit is highly unlikely under the null hypothesis that
AR? = 0 percentage points.

The second row of Table II performs the exact same exercise, only this time
relative to a benchmark model using three lags of the market return. This mar-
ket benchmark performs much worse than the AR(3) benchmark, explaining
only R2Bmk = 0.311% of the variation in returns. And, the one-minute-ahead
return forecasts coming from the market benchmark use totally different infor-
mation from those coming from the LASSO. The point estimate of AR? = 2.469
percentage points is identical to our original estimate for R21ASS0 = 2.467%
to within one part in 500. What is more, the third row shows that a com-
bined benchmark model that uses a stock’s own returns as well as the market’s
returns does not improve on the simple AR(3) benchmark.

Alternative Lag Structures. The next four rows in Table II examine the
LASSO’s increase in out-of-sample fit relative to alternative AR(1), AR(2),
AR(4), and AR(5) benchmark models. The AR(3) benchmark has the high-
est out-of-sample fit, so we use it in our main specifications. But the LASSO
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Table II
Increase in OQut-of-Sample Fit, Main Results

This table presents the results on the LASSO’s increase in out-of-sample fit relative to a variety of
benchmark models measured as the percentage point increase in adjusted-R2. The regressions are
run on a randomly selected subset of 250 stocks on each trading day from January 2005 to December
2012. R,%‘Bmk: Out-of-sample fit of a benchmark model measured using the adjusted-R2. AR2: The
LASSO’s increase in out-of-sample fit. p-value: Probability of observing the realized increase in out-
of-sample fit A RZ under the null hypothesis of no increase. Numbers in parentheses are standard
errors clustered by stock-day. Numbers in square brackets represent the 95% confidence interval
for the mean. AR(3): three lags of a stock’s own returns. Market: three lags of the market’s returns.
AR(3), Market: three lags of a stock’s own returns and three lags of the market’s returns. AR(1):
one lag of a stock’s own returns. AR(2): two lags of a stock’s own returns. AR(4): four lags of a stock’s
own returns. AR(5): five lags of a stock’s own returns. AR(A*): h* lags of a stock’s own returns, where
h* is chosen within each 30-minute estimation window using the BIC. Market, Industry: three lags
of the market’s returns and three lags of the stock’s industry’s returns. Market, Size, Value: three
lags of the market’s returns, a size portfolio’s returns, and a value portfolio’s returns, respectively.
AR(3), Market, Industry, Size, Value: three lags of the market’s returns, a stock’s industry’s returns,
a size portfolio’s returns, and a value portfolio’s returns, respectively. The results indicate that a
researcher could explain an additional ARE = 1.185 percentage points of the variation in returns
by using both the LASSO and an AR(3) model rather than just the AR(3) model alone.

Benchmark Model R2Bmk [g)] AR? [Percentage Points] p-Value

AR(3) 7.365 1.185 [1.162, 1.208] 0.000
(0.076) (0.012)

Market 0.311 2.469 [2.416, 2.522] 0.000
(0.003) (0.027)

AR(3), Market 0.058 1.424 [1.395, 1.453] 0.000
(0.058) (0.015)

AR(1) 6.061 1.288 [1.263, 1.314] 0.000
(0.052) (0.013)

AR(2) 7.309 1.165 [1.143, 1.188] 0.000
(0.071) (0.012)

AR(4) 7.174 1.238 [1.214, 1.262] 0.000
(0.076) (0.012)

AR(5) 6.725 1.307 [1.282, 1.332] 0.000
(0.074) (0.013)

AR(R*) 8.031 1.134 [1.113, 1.156] 0.000
(0.080) (0.011)

Market, Industry 0.314 2.436 [2.384, 2.489] 0.000
(0.007) (0.027)

Market, Size, Value 0.214 2.443 [2.390, 2.496] 0.000
(0.003) (0.027)

AR(3), Market, Industry, Size, Value 1.443 2.232 [2.184, 2.279] 0.000
(0.015) (0.024)

increases out-of-sample fit by roughly AR,% = 1.2 percentage points regardless
of the number of lags used in the benchmark model. In fact, the row labeled
“AR(h*)” shows that the LASSO still increases out-of-sample fit by AR? = 1.1
percentage points relative to an autoregressive benchmark model where the
number of lags has been optimally chosen within each 30-minute estimation
window using the BIC.
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Including Portfolio Returns. Finally, the last three rows in Table IT show that
the LASSO’s increase in out-of-sample fit persists even when the benchmark
model includes lagged industry and risk-factor returns. In particular, the last
row examines the LASSO’s increase in out-of-sample fit relative to a bench-
mark model that includes three lags of the market’s returns, three lags of a
stock’s industry’s returns, three lags of a size portfolio’s returns, three lags
of a value portfolio’s returns, and three lags of a stock’s own lagged returns.
Using this benchmark model to generate one-minute-ahead return forecasts
means estimating an OLS regression with 1+ 5 x 3 = 16 coefficients in just
30 minutes of data. The fact that this more elaborate benchmark has a lower
out-of-sample fit than the simple AR(3) benchmark is evidence of overfitting.
By contrast, the fact that using the LASSO increases out-of-sample fit relative
to this same AR(3) benchmark suggests the LASSO is capturing meaningful
new information.

Cross-Sectional Variation. The LASSO’s increase in out-of-sample fit does not
appear to be explained by observable differences across stocks. For example,
Figure 2 shows that the LASSO’s AR? = 1.185-percentage-point increase rel-
ative to the AR(3) benchmark and its AR? = 2.469-percentage-point increase
relative to the market benchmark are remarkably consistent across industries.
In addition, Table III shows that the LASSO’s increase in out-of-sample fit is
not explained by firm characteristics such as market capitalization, trading vol-
ume, return volatility, or bid-ask spread. In fact, the LASSO actually increases
out-of-sample fit slightly more for large, liquid, frequently traded stocks—that
is, for stocks with returns that are the hardest to predict using conventional
methods.

Time Series Variation. How does the LASSO’s increase in out-of-sample fit
vary over time? The left panel of Figure 3 shows that the LASSO increased
in out-of-sample fit less during the financial crisis. This pattern is consistent
with existing research showing that returns display a stronger single-factor
structure during market downturns (Ferson and Harvey (1991), Dangl and
Halling (2012), Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014)). If there
is a strong single-factor structure, then there cannot be as many unexpected,
short-lived, and sparse signals in the cross-section of returns. And, if there
are not many unexpected, short-lived, and sparse signals in the cross-section
of returns, then using the LASSO should not increase out-of-sample fit by
much.

The right panel of Figure 3 looks at the intraday time series properties
of the LASSO’s increase in out-of-sample fit. To create this figure, we reesti-
mated the regressions in equations (10) and (11) 356 times each trading day
using the cross-section of all 250 forecasts. We then averaged the resulting
adjusted-R? statistics in each minute across trading days. The fact that the
LASSO’s increase in out-of-sample fit is so smooth suggests that our findings
are not explained by intraday microstructure effects.
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Figure 2. Increase in out-of-sample fit, by industry. This figure shows the LASSO’s increase
in out-of-sample fit relative to the AR(3) and market benchmarks sorted by three-digit SIC indus-
tries. Increase in out-of-sample fit is measured as the percentage point increase in adjusted-R2.
Regressions are run on a randomly selected subset of 250 stocks on each trading day from January
2005 to December 2012. We restrict the sample to industries with at least 20 firms on average. The
left panel shows the LASSO’s increase in out-of-sample fit relative to a AR(3) benchmark with the
dashed line representing AR? = 1.185 percentage points. The right panel shows that the LASSO’s
increase in out-of-sample fit relative to a market benchmark with the dashed line representing
AR? = 2.469 percentage points. The results indicate that the LASSO increases out-of-sample fit
for all industries.

D. Sharpe Ratios

We have just seen that using the LASSO leads to a statistically significant
1.2-percentage-point increase in out-of-sample fit. But, what is the economic
magnitude of this gain? Because “any predictive regression can be expressed as
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Table III
Increase in Out-of-Sample Fit, by Characteristics

This table presents the result of the LASSO’s increase in out-of-sample fit relative to the AR(3) and
market benchmarks sorted by firm characteristics. Increase in out-of-sample fit is measured as the
percentage point increase in adjusted-R2. Regressions are run on a randomly selected subset of
250 stocks on each trading day from January 2005 to December 2012. ARE: The LASSO’s increase
in out-of-sample fit relative a benchmark model. p-value: Probability of observing the realized A R2
under the null hypothesis of no increase. Numbers in parentheses are standard errors clustered by
stock-day. Numbers in square brackets are 95% confidence intervals. Mkt Cap: Market value at the
close of the previous trading day. Volume: Trading volume on the previous trading day. Volatility:
Volatility of one-minute returns during the previous trading day. Spread: Average bid-ask spread
during the previous trading day. High, >50th percentile: Subset of stocks with above-median values
for a given characteristic. Low, <50th percentile: Subset of stocks with below-median values for
the same characteristic. The results indicate that the LASSO increases out-of-sample fit slightly
more for large, liquid, and frequently traded stocks.

AR(3) Benchmark
High, >50th Percentile Low, <50th Percentile
AR,ZL [Percentage Points] p-Value AR% [Percentage Points] p-Value
Mkt Cap 1.341 [1.307, 1.375] 0.000 1.029 [1.007, 1.051] 0.000
0.017 0.011
Volume 1.347 [1.315, 1.380] 0.000 1.023 [1.002, 1.044] 0.000
0.017 0.011
Volatility 1.137 [1.113, 1.162] 0.000 1.234 [1.204, 1.265] 0.000
0.012 0.016
Spread 0.996 [0.975, 1.017] 0.000 1.377 [1.343, 1.410] 0.000
0.011 0.017
High, >50th Percentile Low, <50th Percentile
AR? [Percentage Points] p-Value AR? [Percentage Points] p-Value
Mkt Cap 2.605 [2.534, 2.675] 0.000 2.332 [2.280, 2.385] 0.000
0.036 0.027
Volume 2.518 [2.454, 2.582] 0.000 2.419 [2.360, 2.478] 0.000
0.033 0.030
Volatility 2.680 [2.626, 2.734] 0.000 2.259 [2.196, 2.321] 0.000
0.028 0.032
Spread 2.302 [2.251, 2.353] 0.000 2.639 [2.569, 2.709] 0.000
0.026 0.036

a portfolio sort” (Pedersen (2015, p. 51)), we answer this question by studying
the performance of a LASSO-implied trading strategy.
Naive Starting Point. Here is the starting point for our LASSO-implied strat-

egy. Note that the slope coefficient, b,, from equation (9) can be written as

_ LASSO _ ;7 LASSO
C nt n
ov [r n.t+1, — SLASSO ]
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b, = (12)
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Figure 3. Increase in out-of-sample fit, time series. This figure plots time series variation in
the LASSO’s increase in out-of-sample fit relative to the AR(3) and market benchmarks. Increase in
out-of-sample fit is measured as the percentage point increase in adjusted-R2. Regressions are run
on a randomly selected subset of 250 stocks on each trading day from January 2005 to December
2012. The panel on the left corresponds to the LASSO’s increase in out-of-sample fit by month.
The panel on the right corresponds to the LASSO’s increase in out-of-sample fit by minute of the
trading day. The results indicate that the LASSO increased in out-of-sample fit less during the
financial crisis, but the LASSO’s increase in out-of-sample fit is relatively stable over the course of
the trading day.

where 1,1 is the n™ stock’s realized return in minute (¢ + 1), £-4550 is the
LASSO’s one-minute-ahead return forecast for minute (¢ + 1), mL4SSO and
sLASSO denote the mean and standard deviation of the LASSO’s one-minute-
ahead return forecasts for the n™ stock over the course of the entire trading
day, and the operators Cov|[-] and Var[-] denote the covariance and variance over
the same time period—that is, one observation for each minute from 10:04 am
to 3:59 pm.

Because we normalize the LASSO’s one-minute-ahead return forecasts to
have zero mean and unit variance within a given trading day, the denominator
in equation (12) is equal to 1. Thus, we can write out the expression for b, using
just the covariance term as

LASSO = LASSO
f n,t - my

b, = COVI:rn’t_‘_l,

] (13a)
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where @, denotes the n'" stock’s mean return during the day.
This expression can be interpreted as an average return to a naive LASSO-

implied strategy:

PN = (uger — @) x (Yaso) x (£ — mASS0). a4
The strategy is long l/g%ASSO shares of the n'" stock for each 1 percentage point
that the LASSO’s one-minute-ahead return forecast exceeds its mean. Like-
wise, it is short asso shares of the n? stock for each 1 percentage point that

the LASSO’s forecast falls below its mean for the day. The strategy will be
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profitable if the n'" stock’s realized return in minute (¢ + 1) tends to be above
average, ', ;11 > @, when the LASSO’s return forecast is also above average,

LASSO > mASSO “and vice versa. Thus, we can interpret Table I as saying that,
for a randomly selected stock-day, this naive LASSO-implied strategy has a
gross return of b, = 1.433% per month.

There are three problems with implementing this naive LASSO-implied
strategy, though. To start with, the strategy ignores trading costs (Hasbrouck
(2009), Frazzini, Israel, and Moskowitz (2017), Novy-Marx and Velikov (2015)),
which are substantial when trading at the one-minute horizon. The strategy
also suffers from look-ahead bias. We do not know the n'? stock’s mean return,
ay, or the mean and variance of the LASSO’s one-minute-ahead return fore-
casts, mASSO and sL4SSO until the end of the trading day. Finally, the strategy
gives no guidance on how we should combine the 250 different one-minute-
ahead return forecasts we make each minute. So, we modify the strategy in
equation (14) in several ways to account for these problems.

Trading Costs. Let us start with the trading-cost adjustments. To account for
trading costs, we make two changes. First, we change the naive LASSO-implied
strategy so that it only executes an order when the LASSO’s one-minute-ahead
return forecast exceeds the bid-ask spread, 1 suasso_g,,q - Then, conditional
on a trade taking place, we compute the strategy’s realized returns net of this
bid-ask spread (7, ;41 — @) - Sign[ fLASSO] — sprd,, ;.

Look-Ahead Bias. Next, let us turn to the issue of look-ahead bias. To elim-
inate any look-ahead bias, our strategy should only use values for @,, m;A550,
and 54550 that are known prior to trading in minute (¢ + 1). To make sure
this is the case, we start by assuming that both realized returns and one-
minute-ahead return forecasts are mean-zero variables, @, = m-455° = 0. This
is a reasonable assumption at the one-minute horizon as emphasized by our
point estimate of @, = 0.002% per month in Table I. In addition, we also esti-
mate the standard deviation of the LASSO’s one-minute-ahead return forecast
during the previous 30 minutes of trading rather than over the course of the
entire trading day. We use 6,%’530 to denote this in-sample standard-deviation
estimate.

Portfolio Construction. Finally, we come to the question of portfolio construc-
tion: how do we combine the 250 different forecasts each minute into a sin-
gle portfolio? The naive strategy buys/sells more shares of the n'" stock per
1-percentage-point change in the LASSO’s forecast when the LASSO’s one-
minute-ahead return forecasts for the n* stock tend to be less volatile through-
out the trading day. Intuitively, a one-minute-ahead return forecast that is
0.20 percentage points above/below average is a very different signal when the
typical return forecast is on the order of m45S° + 0.02 percentage points from
when it is on the order of m4SS? +2.00 percentage points. In the first case,
a 0.20-percentage-point above/below average forecast is noteworthy, garner-
ing a large portfolio weight; whereas, in the second case, it is commonplace,
garnering a small portfolio weight.
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We want our strategy to have a similar flavor. But, we also want to be able
to fund the strategy by borrowing $1 at the riskless rate prior to the beginning
of each trading day. Then, the strategy’s returns at the end of the trading
day minus the riskless rate would represent the excess returns to a zero-cost
portfolio. The complication comes from the fact that the number of LASSO
forecasts that exceed the spread, 1 usso_g,,q ;, can change from minute to
minute. So, we need a rule that determines how much we invest for each of the
stocks with a forecast that exceeds the spread in a given minute.

Here is how we do this. Suppose that the LASSO generated a one-minute-
ahead return forecast for the n" stock that exceeds the spread in minute ¢.
Then, the LASSO-implied strategy invests a fraction a)LASSO of its assets in the
n'? stock:

LASSO
HLASSO df 7 1p850) - - 1 prassoygpra, ) . (15)

nt
250 LASSO
2 : (1/ IAsso) f ]_ f;;f}ssobsprd,,r_t}

The denominator is the total investment, both long and short, dictated by the
naive strategy in stocks with forecasts that exceeded the spread in minute ¢.
The numerator is the investment dictated by the naive strategy in the n'" stock.
The settlement period for NYSE stocks is longer than one minute, so it does
not make sense to net out offsetting short and long positions at the one-minute
horizon. This is why we use the absolute-value operator in the denominator.
If there are no stocks with LASSO forecasts that exceed the spread in a given
minute, then @559 = 0 for all stocks.

Consider a quick example to see what these weights imply. Suppose that
there are eight stocks with LASSO forecasts that exceed the spread. And,
to keep things simple, suppose further that the first four forecasts are +1
percentage points while the second four forecasts are —1 percentage points.
If all eight forecasts have a volatility of 0.02%, then the denominator will be
8- |(Yo.029) - 1 percentage point| = 400. And the LASSO-implied strategy will
invest one-eighth of its portfolio position in each stock. But, if stocks 1, 2,
5, and 6 instead have forecast volatilities of 2%, then the denominator will
be 4 - |(Yp.029) - 1 percentage point| + 4 - [(}49,) - 1 percentage point| = 202. This
means that stocks 1, 2, 5, and 6 will have portfolio weights of @455 = +1/,04
while stocks 3, 4, 7, and 8 will have portfolio weights of @455 = :|:100/404—that
is, weights that are 100 times larger in magnitude.

LASSO-Implied Strategy. Thus, the net return each minute to our LASSO-
implied strategy is

250
rtL+AISSO — Z {rn 1 - Slgn[ LASSO] sprdn t} ~r1;1t\SSO (16)
n=1

This strategy accounts for trading costs and does not suffer from look-ahead
bias. In addition, if we subtract off the riskless rate from this strategy’s end-
of-day returns, then the resulting excess returns correspond to the returns of a
zero-cost portfolio funded by borrowing $1 at the beginning of the trading day.
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Table IV
Forecast-Implied Performance Net of Trading Costs

This table presents results of the performance of forecast-implied trading strategies net of trading
costs on each trading day from January 2005 to December 2012. The top panel reports annualized
Sharpe ratios of forecast-implied trading strategies net of trading costs. The first column reports
results for a strategy that invests $1 in the S&P 500 at the market open on January 3, 2005 and
holds that position until the market close on December 31, 2012. The second column reports results
for the LASSO’s forecast-implied trading strategy over the same time period. The third column
reports analogous results for an AR(3)-implied strategy with the same initial investment. The
bottom panel reports net abnormal returns of the LASSO-implied strategy relative to the market,
the Fama and French (1993) three-factor model, and the Carhart (1997) four-factor model. The
size of the initial investment in the LASSO-implied strategy was chosen so that it has the same
average excess return as the buy-and-hold S&P 500 strategy. The first column reports annualized
abnormal returns. The remaining columns report dimensionless slope coefficients associated with
each of the factors. The results indicate that the LASSO-implied strategy generates positive excess
returns net of the spread with an annualized Sharpe ratio of 1.791, and these excess returns are
not explained by the strategy’s exposures to standard risk factors.

Annualized Sharpe Ratios

S&P 500 LASSO AR(3)

0.123 1.791 —0.662

LASSO-Implied Strategy Abnormal Returns [%/Year]

a Mkt HmL SmB Mom
Market 2.709 0.004
(0.034) (0.002)
Three-factor model 2.713 0.004 —0.004 0.000
(0.034) (0.002) (0.004) (0.003)
Four-factor model 2.707 0.005 —0.004 0.003 0.003
(0.034) (0.002) (0.004) (0.004) (0.004)

Sharpe Ratios. Table IV compares the performance of this LASSO-implied
strategy with other benchmarks. Let us start with the top panel, which pro-
vides information on annualized Sharpe ratios. The first column reports the
Sharpe ratio of an unconditional buy-and-hold S&P 500 strategy. The strat-
egy generates an annualized Sharpe ratio of only 0.123. The Sharpe ratio is
relatively low because the S&P 500’s returns were quite volatile during our
sample period, which includes the financial crisis. The next column reports
the LASSO-implied strategy’s Sharpe ratio, which is 1.791. This point esti-
mate is more than 12 times larger than the Sharpe ratio of the unconditional
buy-and-hold strategy.

The last column describes the performance of an AR(3)-implied strategy that
is analogous to the LASSO-implied strategy—that is, a strategy constructed
by replacing ,{jf‘sso with fftR@’) in equation (16). It turns out that this AR(3)-
implied strategy loses money. Even though the AR(3) benchmark had higher
out-of-sample fit than the LASSO, it is not possible to trade on the AR(3)
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benchmark’s one-minute-ahead return forecasts after adjusting for the bid-ask
spread and look-ahead bias.

Thus, the R2B™k = 7.365% out-of-sample fit for the AR(3) benchmark does
not translate into economically meaningful performance. This finding is broadly
consistent with the results in both Korajezyk and Sadka (2004) and Patton
and Weller (2017), who give evidence that momentum profits disappear after
adjusting for trading costs. The forecast-implied strategy associated with the
market benchmark performs even worse than the one associated with the AR(3)
benchmark.

Abnormal Returns. The positive excess returns earned by the LASSO-implied
strategy do not appear to be explained by standard risk factors. In the bottom
panel of Table IV, we study the LASSO-implied strategy’s covariance with the
daily return on the market, the daily returns on size and value portfolios (Fama
and French (1993)), and the daily return on a momentum portfolio (Carhart
(1997)). Because the LASSO-implied strategy is zero cost, we choose the scale
of the initial investment so that it has the same average excess return as the
buy-and-hold S&P 500 strategy, 2.719% per year. Because the net returns to the
LASSO-implied strategy are so smooth—12 times less volatile than the returns
on the S&P 500—we find that exposure to these commonly used risk factors at
the daily horizon explains almost none of the LASSO-implied strategy’s excess
returns.

Increases versus Levels. If the AR(3)-implied strategy had delivered positive
excess returns, then we would have examined whether a 50/50 combination of
the LASSO- and AR(3)-implied strategy produced an even higher Sharpe ratio
than the AR(3)-implied strategy on its own (Asness, Moskowitz, and Pedersen
(2013), Novy-Marx (2017)). But such a test is no longer necessary given that
the AR(3)-implied strategy loses money. If the AR(3)-implied strategy delivers
negative net returns, then there is no way that it could be explaining the
LASSO-implied strategy’s positive net returns. The difference in signs implies
a difference in the signals being used.

Trade Frequency. Finally, Table V gives summary statistics describing the
rate at which both the LASSO- and AR(3)-implied strategies trade. The first
row of the top panel reveals that the AR(3)-implied strategy trades roughly
twice as often as the LASSO-implied strategy, 17.643 trades versus 8.624 trades
per minute out of 250 possible trades. The second row shows that roughly half
of each strategy’s trades are buy orders, and the third row shows that roughly
a third of each strategy’s trades are profitable. Finally, the bottom panel shows
that the LASSO-implied strategy is more active in large, liquid, frequently
traded stocks.

ITI. Predictor Analysis

After seeing the increase in out-of-sample fit associated with the LASSO, a
natural next question is: What do the predictors selected by the LASSO look
like? In this section, we give evidence that the LASSO identifies predictors that
are unexpected, short-lived, and sparse.
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Table V
Trading Frequency of Forecast-Implied Strategies

This table presents the results of the trading frequency of forecast-implied strategies computed
using the same randomly selected subset of 250 stocks on each trading day from January 2005 to
December 2012 for which we compute one-minute-ahead return forecasts using the LASSO. The top
panel reports aggregate result, the first row reports the average number of trades per minute made
by LASSO- and AR(3)-implied strategies. The second row reports the number of buy orders per
minute. The third row reports the number of trades per minute that made money after accounting
for the bid-ask spread. The bottom panel reports results by number of trades, buy orders, and
successful trades per minute for the LASSO-implied strategy among large stocks, stocks with high
trading volume, stocks with high return volatility, and liquid stocks. The results indicate that
the AR(3)-implied strategy trades roughly twice as often as the LASSO-implied strategy, and the
LASSO-implied strategy is more active in large, liquid, and frequently traded stocks.

Aggregate [Number/Minute]

LASSO AR(3)
Trades 8.624 17.643
Buy orders 4.306 8.887
Successful 2.600 6.538

By Characteristics [Number/Minute]

>50th Percentile >50th Percentile >50th Percentile >50th Percentile

Mkt Cap Volume Volatility Spread
LASSO trades 5.188 5.115 4.821 5.114
LASSO Buy orders 2.592 2.555 2.407 2.556
LASSO successful 1.578 1.533 1.467 1.550

A. Unexpected

There are many lead-lag relationships already documented in the academic
literature at the weekly and monthly horizons. For example, Lo and MacKin-
lay (1990) and DeMiguel, Nogales, and Uppal (2014) both show that the re-
turns of large stocks predict the future returns of small stocks, Chordia and
Swaminathan (2000) show that the returns of high-volume stocks predict the
future returns of low-volume stocks, and Hou (2007) shows that the returns of
larger stocks within an industry predict the future returns of smaller stocks
within the same industry. We now give evidence that the LASSO’s choice of pre-
dictors does not follow these existing lead-lag relationships—in other words,
the LASSO identifies an unexpected collection of predictors.

Econometric Approach. Suppose that stock n is one of the randomly chosen
250 stocks for which we use the LASSO to make one-minute-ahead return fore-
casts on day d. For each stock n’ € {1, ..., N}, we define an indicator variable
that is 1 if stock n’ was ever used by the LASSO as a predictor in any of the
356 forecasts for stock n on day d and 0 otherwise. Note that for computational
reasons this indicator variable summarizes the contribution of all three lags
of the n'*" stock’s returns. We then use a logit regression with this indicator as
the dependent variable to study how the characteristics of stock n’' are related
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Table VI
Characteristics of LASSO Predictors

This table presents the results of the characteristics of the predictors selected by the LASSO.
On each trading day, d, from January 2005 to December 2012, the data contain one observation
per predictor for each of the randomly selected 250 stocks for which we make one-minute-ahead
return forecasts. For example, on October 6, 2010, the LASSO could choose as predictors any of the
N = 2,191 NYSE-listed stocks. So, on that day, our data contain 250 x 2,191 = 547,750 separate
observations. Each column reports results from a different logit regression. Point estimates are
log-odds ratios. Numbers in parentheses are standard errors clustered by day and predictor (i.e.,
stock n’). Numbers in square brackets are the marginal effects implied by the log-odds ratios. Dep.
Variable: An indicator variable equals to 1 if stock n’ was ever used by the LASSO as a predictor
when making one-minute-ahead return forecasts for stock n on day d. Mkt Cap > 50th percentile:
An indicator variable equals to 1 if stock n’ had above-median market capitalization on day d.
Volume > 50th percentile: An indicator variable equals to 1 if stock n’ had above-median trading
volume on day d. Volatility > 50th percentile: An indicator variable equals to 1 if stock »’ had above-
median one-minute-return volume on day d. Spread < 50th percentile: An indicator variable equal
to 1if stock n’ had a below-median average bid-ask spread on day d. In Same Industry: An indicator
variable equals to 1 if stock n and stock n’ both belonged to the same three-digit SIC industry. The
results indicate that there is little correlation between the LASSO’s choice of predictors and firm
size, trading volume, return volatility, and the bid-ask spread, and that the LASSO is less likely to
select a stock from the same industry as a predictor.

Dep. Variable: Ever Selected

Mkt Cap > 50th percentile 0.005 0.003
(0.004) (0.007)
[0.11%] [0.07%])

Volume > 50th percentile 0.004 0.001
(0.004) (0.006)
[0.09%] [0.01%]

Volatility > 50th percentile —0.005 —0.004
(0.004) (0.004)
[0.13%] [0.10%]

Spread < 50th percentile 0.002 0.006
(0.004) (0.006)
[0.05%] [0.15%]

In same industry —0.046 —0.046
(0.006) (0.006)
[0.15%] [0.14%]

to the probability that the LASSO identifies its lagged returns as a predictor
for stock n at some point during the trading day.

Empirical Results. Table VI contains the results of these logit regressions.
The first column shows that the LASSO is no more likely to select large stocks
than small stocks as predictors. The second column shows that infrequently
traded stocks are just as likely to be selected as predictors by the LASSO
as frequently traded stocks. The third column shows that return volatility
is not related to the LASSO’s choice of predictors. And, the fourth column
shows that the LASSO is equally likely to use liquid and illiquid stocks as
predictors. In short, these four columns document a lack of correlation between
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Figure 4. The LASSO’s penalty parameter. This figure plots the monthly average (solid line)
and 95% confidence interval (gray bands) for the LASSO’s cross-validated penalty parameter, A,, in
units of % per month. The dashed line denotes sample average over the full sample period, which
is 2.5%. Regressions are run on a randomly selected subset of 250 stocks on each trading day
from January 2005 to December 2012. The results indicate that the LASSO typically ignores all
predictors weaker than A = 2.5% per month when making its one-minute-ahead return forecasts.

firm characteristics and the LASSO’s choice of predictors. The fifth column, by
contrast, reveals that the LASSO is 1.15% less likely to select a stock from the
same industry as a predictor. Thus, the LASSO is not just selecting predictors
based off of the intraindustry lead-lag effect documented in Hou (2007). The
final column shows that all of these patterns continue to hold up when these
variables are included in the same regression specification.

Penalty Parameter. How can the LASSO increase out-of-sample fit at the
one-minute horizon but still be so unrelated to firm characteristics? After all,
researchers know that these characteristics are correlated with returns at the
weekly and monthly horizons. This seeming contradiction resolves itself when
we examine the size of the LASSO’s penalty parameter, A,,. The LASSO sets all
coefficients smaller than A, to be precisely zero—that is, it completely ignores
these predictors.

Figure 4 plots the mean and 95% confidence interval for A, each month during
our sample period. The horizontal dashed line denotes the sample average for
An, Which is 2.5% per month. In other words, the LASSO typically ignores
all predictors weaker than A = 2.5% per month when making its one-minute-
ahead return forecasts. This lower bound is more than twice as large as the
size of well-known predictors at the weekly and monthly horizon (McLean and
Pontiff (2016), Harvey, Liu, and Zhu (2016), Linnainmaa and Roberts (2017)).

This is why our implementation of the LASSO at the one-minute horizon
is not identifying the existing steady long-lived predictors documented in the
academic literature. If they were to last an entire month, the predictors that
we identify using the LASSO would result in outlandish returns that we do not
see in practice. Put differently, existing steady long-lived predictors at weekly
and monthly horizons are too weak at the one-minute horizon for the LASSO
to detect. This finding suggests that cross-sectional return predictability at the
one-minute horizon follows a different structure from cross-sectional return
predictability at the one-week and one-month horizons.
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Figure 5. Predictor duration. This figure plots the average (solid line) and 95% confidence
interval (gray bands) for the usage duration of the predictors chosen by the LASSO in units of
minutes. The y-axis is on a log scale and represents the probability that a predictor is used by
the LASSO when making one-minute-ahead return forecasts in more than x consecutive minutes.
Tick marks on the x-axis represent the duration associated with a given quantile on the y-axis.
Regressions are run on a randomly selected subset of 250 stocks on each trading day from January
2005 to December 2012. The results indicate that less than 5% of predictors selected by the LASSO
are used for more than 14.2 consecutive minutes.

B. Short-Lived

If the predictors identified by the LASSO would lead to unrealistic amounts
of predictability if scaled up to the weekly or monthly horizons, then these
predictors must not last that long. They must be short-lived. And this is indeed
the case. To show this, we compute the length of time that the LASSO typically
uses each predictor.

Econometric Approach. Suppose that stock n is one of the 250 randomly
selected stocks for which we use the LASSO to make one-minute-ahead return
forecasts on day d. Now, consider the first minute that we generate a one-
minute-ahead return forecast, 10:04 am. We collect all of the predictors used by
the LASSO to make this return forecast for stock n. Then, in each subsequent
minute, we compute the fraction of these predictors that are still being used by
the LASSO to generate one-minute-ahead return forecasts for stock n. If stock
n’ was used as a predictor in the LASSO’s return forecast at minute 10:04 am but
not at minute 10:05 am, then we would say that this predictor had a duration
of 1 minute; whereas, if stock n’ was used as a predictor at 10:04 am as well as
every subsequent minute up to but not including 10:14 am, then we say that
this predictor had a duration of 10 minutes. We repeat this calculation for each
of the LASSO’s remaining 355 forecasts for stock n on that day. And, we do the
same thing for every other stock on day d and for every other trading day as
well.

Empirical Results. Figure 5 shows the results of these calculations. We find
that less than 5% of the predictors selected by the LASSO are used when mak-
ing one-minute-ahead return forecasts in more than 14.2 consecutive minutes.
And, less than 1% of predictors are used by the LASSO for more than 25.2
minutes in a row. The short duration of the LASSO’s predictors helps explain
the lack of correlation between these predictors and firm characteristics.

Some Intuition. Financial economists tend to study particular time scales.
The field of market microstructure analyzes intraday events. People doing
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asset pricing research consider phenomena at the daily, weekly, and monthly
horizons. And, research on macrofinance topics focuses on questions about how
markets evolve from one quarter or one year to the next.

Clearly, each of these horizon-specific subfields is studying different aspects
of the same underlying return process. There is only one return process for
the S&P 500. Its one-minute returns in a month must sum up to its monthly
return. So, it might seem odd that predictability at the one-month horizon does
not imply predictability at the one-minute horizon. But, as illustrated in the
parable of the blind men and the elephant (Holland and Quigley (1959)), the
same underlying process can manifest itself in very different ways depending
on the researcher’s perspective.

What is more, we are all familiar with processes that have different dynamics
at different time scales in our everyday lives. Just think about how animals
grow. A caterpillar hardly appears to change from one minute to the next, but
it may be a butterfly by this time next week. Or, think about how languages
evolve. At this time last year, the word “awful” had pretty much the same
meaning as it does today (very unpleasant; “an awful stench”). But, centuries
ago the word had nearly the opposite meaning (inspiring wonder; “the awful
majesty of God”).?

When we look at the kinds of predictors selected by the LASSO, we find
something similar. Like caterpillars and butterflies, these predictors have little
relation to the predictors at the weekly and monthly horizons documented in
the academic literature. And, we can use the functional form of the LASSO’s
optimization problem to shed light on how this can be the case. On one hand,
in order to identify cross-sectional predictors fast enough, the LASSO has to
ignore any source of predictability weaker than A = 2.5% per month. On the
other hand, the predictors identified by the LASSO typically last less than 15
minutes, making them imperceptible to monthly investors.

C. Sparse

Finally, the LASSO should only increase out-of-sample fit if there are unex-
pected short-lived signals in the cross-section of returns that are also sparse.
We find that, on average, the LASSO uses only 12.7 predictors (out of a pos-
sible 3 - N ~ 6,000) when making its one-minute-ahead return forecasts for
each stock. Figure 6 plots the average number of predictors, S, ;, used by the
LASSO for each of its one-minute-ahead return forecasts in a given month, and
the gray bands report the 95% confidence interval. We further emphasize this
point in Appendix C.

IV. Economic Origins

The LASSO uses a purely statistical rule to identify candidate predictors
that are too unexpected and short-lived to be pinned down by a researcher’s

3 See OED Online, March, 2017, Oxford University Press, https:/goo.gl/DGkBEI.
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Figure 6. Predictor sparsity. This figure plots the average (solid line) and 95% confidence
interval (gray bands) for the number of predictors, S, ;, used by the LASSO for each of its one-
minute-ahead return forecasts in a given month. The dashed line denotes the sample average over
the course of the entire sample period, which is 12.7 predictors. Regressions are run on a randomly
selected subset of 250 stocks on each trading day from January 2005 to December 2012. The results
indicate that, on average, the LASSO uses only 12.7 predictors (out of a possible 3 - N ~ 6,000)
when making its one-minute-ahead return forecasts for each stock.

intuition alone. However, because it does not rely on a researcher’s intuition,
the LASSO’s increase in out-of-sample fit could in principle have nothing to
do with economic fundamentals. But, this is not what we find in the data.
And, we conclude our analysis by showing that the LASSO tends to identify as
predictors the lagged returns of stocks with news about firm fundamentals. In
other words, the LASSO identifies predictors that are not easy to intuit but are
still economically meaningful.

A. Ravenpack Data

To investigate the link between the LASSO’s choice of predictors and real-
world events, we use data from Ravenpack. Ravenpack has a partnership with
Dow Jones, giving it access to the full Dow Jones news archive. These data con-
sist of all Dow Jones Newswire and Wall Street Journal articles. The Dow Jones
news archive is used in many prior studies (Kolasinski, Reed, and Riggenberg
(2013), Shroff, Verdi, and Yu (2013), Dai, Parwada, and Zhang (2015)). Raven-
pack data are time-stamped to the millisecond, which allows us to examine the
relative timing of news announcements and the LASSO’s choice of predictors.

Because we are particularly interested in the link between the LASSO’s
choice of predictors and economically meaningful events, we look only at news
articles in the Ravenpack data about a company’s revenues. In addition, we
restrict attention to articles that Ravenpack has labeled as “strongly relevant”
for a NYSE-listed company. To make sure that we are not looking at stale news,
we narrow our focus even further and only consider articles that Ravenpack
labels as “news flashes” and gives the highest novelty score to. We also remove
any news articles about companies that had another revenue-related news flash
during the previous five days. Finally, we only consider news announcements
that occur from 10:04 am to 3:59 pm. We are left with a collection of novel news
flashes about firm revenues that occur during normal trading hours.
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Figure 7. The LASSO’s selection rate around news. This figure plots the LASSO’s selection
rate around two types of news. x-axis: event time relative to news flash (in minutes). Vertical
dashed line: minute of news flash about /! stock’s revenues, 4 = 0. y-axis: difference between the
number of times that the LASSO selected the n/t" stock as a predictor when making its one-minute-
ahead return forecast for minute 4 and the number of times it did so for minute & = 0. Each dot
denotes the difference in the LASSO’s selection rate in minute 4 relative to minute 4 = 0, with the
large diamond denoting a difference of 0 for 2 = 0 (a normalization). Gray dots denote differences
that are statistically significant at the 5% level using standard errors clustered by year. The left
panel corresponds to news flashes about scheduled events. The right panel corresponds to news
flashes about unscheduled events. Estimation results are computed using the 61-minute window
around each novel news flash about an NYSE-listed stock’s revenues that occurred during normal
trading hours from January 2005 to December 2012. The results indicate that when there is a
scheduled news flash about the 't stock’s revenues in minute ¢, the LASSO selects stock ' as a
predictor slightly more often when making its one-minute-ahead return forecasts for minute ¢, that
is, for A = 0, but if the news flash is unscheduled, then the LASSO selects stock ' as a predictor
much more often when making its one-minute-ahead return forecasts in the 10 minutes prior to
minute ¢.

B. Event Study

Does the LASSO select a stock more often in the minutes around a news
flash about the firm’s revenues? Yes.

Econometric Approach. Suppose that there is a new flash about the n't
stock’s revenues in minute {. We define the event time, h, as the number
of minutes since minute #. So, A~ = 0 denotes the minute that a news flash
occurs, i = 10 denotes the 10*" minute afterward, and & = —12 denotes the
12" minute before. We then count the number of times that the LASSO uses
stock n’ as a predictor when creating its one-minute-ahead return forecasts
in each minute h € {—30, ..., -1, 0, 1,..., 30}. We use the LASSO to create
one-minute-ahead return forecasts for a randomly selected set of 250 stocks
each minute, so the maximum number of times that the »'** stock could be
chosen by the LASSO in a given minute is 250.

Empirical Results. The LASSO uses a purely statistical rule to identify can-
didate predictors. So, the LASSO’s choice of predictors could in principle have
nothing to do with economic fundamentals. If this were the case, then the
number of times that the LASSO selected the n'*" stock would be constant with
respect to event time, h. Figure 7 shows that this is not what is going on in the
data. The x-axis counts minutes in event time. The dots denote the number of
additional times that the LASSO selected the n'*" stock in minute 4 relative to
minute h = 0, with red dots denoting differences that are statistically different
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from 0 at the 5% level using standard errors that are clustered by stock. The
left panel of Figure 7 reports the change in the LASSO’s selection rate around
scheduled news about firm revenues, and reveals that the LASSO selects stock
n’ as a predictor slightly more often on the exact minute of the news flash. The
right panel reports the analogous results for unscheduled news. This panel
shows that the LASSO selects stock n as a predictor when making its one-
minute-ahead return forecast much more often in the 10 minutes leading up to
the unscheduled news flash.

Timing of Results. It might seem odd that the LASSO’s selection rate in-
creases in the 10 minutes before an unscheduled news flash. But, this lag makes
sense upon further inspection. For example, think about 3M’s announcement
about cutting 1,800 jobs on December 8, 2008. Or, consider St. Jude’s announce-
ment of the acquisition of AGA medical on October 18, 2010. The market did
not know that these announcements were coming. And, as a result, there was
a several minute lag between when these announcements were actually made
and when journalists broadcast the resulting news flashes. By contrast, when
journalists are expecting an announcement, there should be no such gap. Con-
sistent with this intuition, we find that the LASSO’s selection rate only in-
creases for the exact minute of scheduled news flashes, not in the 10 minutes
before.

Regression Analysis. Table VII puts precise numbers on these results. Each
column reports the results from a different regression. The dependent variable
in all of these regressions is the number of times the n'* stock was selected
as a predictor by the LASSO when making one-minute-ahead return forecasts
in a given minute. The first column shows that the LASSO uses stock n’ to
make 0.115 fewer one-minute-ahead return forecasts in each of the 30 minutes
leading up to a scheduled news flash than it does in the minute of the news
flash and that the LASSO uses stock n’ to make 0.141 fewer one-minute-ahead
return forecasts in each of the subsequent 30 minutes following a scheduled
news flash. The fifth column of Table VII reports that the LASSO uses stock
n’ to make 0.203 more one-minute-ahead return forecasts in each of the 10
minutes leading up to an unscheduled news flash than it does in the minute of
the news flash.

The third and sixth columns in Table VII present two additional robust-
ness checks on our results. First, Ravenpack characterizes each news flash’s
impact on overall market volatility over the course of the next several hours,
and reports this information in a variable called “market impact,” which takes
values from 0 (no impact on aggregate volatility) to 1 (large impact on aggregate
volatility). Consistent with our original hypothesis that the LASSO is identify-
ing unexpected short-lived predictors, we find that the LASSO’s selection rate
for stock ' is not related to the aggregate effect of a news announcement over
the next several hours. Ravenpack also assigns each news flash a sentiment
score ranging from 0 (pessimistic) to 1 (optimistic). The sentiment of the news
flash also appears unrelated to the LASSO’s selection rate in any statistically
significant manner.
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Table VII
The LASSO’s Selection Rate around News

This table presents results of the change in the LASSO’s selection rate around news flashes about
a company’s revenues. Each column reports results from a different regression. Point estimates
have units of number of times selected per minute. Numbers in parentheses are standard errors
clustered by year. Dots denote omitted estimates for the reference category, & = 0. Dep. Variable:
Number of times that the n/th stock was selected as a predictor by the LASSO in minute (¢ + A).
Impact: A 0 (low) to 1 (high) variable summarizing the impact of a news flash on overall market
volatility during the next several hours. Sentiment: A 0 (very negative) to 1 (very positive) variable
summarizing the sentiment of the text contained in a news flash. The left columns report results
of news flashes about scheduled events. The right columns report results of news flashes about
unscheduled events. Regression are run on the 61-minute window around each novel news flash
about an NYSE-listed stock’s revenues that occurred during normal trading hours from January
2005 to December 2012. The results indicate that the LASSO uses stock n’ to make 0.115 fewer
one-minute-ahead return forecasts in each of the 30 minutes leading up to a scheduled news flash,
1_30<n<0, than it does in the minute of the news flash itself, 2~ = 0. By contrast, the LASSO uses
stock n’ to make 0.203 more one-minute-ahead return forecasts in each of the 10 minutes leading
up to an unscheduled news flash, 1_19<0.

Dep. Variable: Times Selected [Number/Minute]

Scheduled News Unscheduled News
1{_30<h<0} -0.115 —0.113
(0.058) (0.101)
1=y . .
130240} —0.141 0.026
(0.054) (0.091)
1{-30<h<—20} -0.139 -0.139 —0.029 —0.029
(0.072) (0.073) (0.120) (0.120)
1i_20<h<—10} —0.124 -0.123 —0.153 —0.153
(0.070) (0.070) (0.124) (0.124)
1{—10<h<0} —0.086 —0.085 0.203 0.202
(0.056) (0.056) (0.094) (0.094)
1ip—0) . . . .
1{1054>0) —0.156 —0.157 0.008 0.008
(0.050) (0.050) (0.086) (0.086)
1120=1>10) -0.126 -0.127 0.001 0.001
(0.063) (0.063) (0.108) (0.108)
1430>h>20} —0.142 —0.142 0.069 0.069
(0.066) (0.066) (0.109) (0.109)
Impact 0.201 —0.142
(0.318) (0.876)
Sentiment 0.170 —1.090
(0.209) (0.659)

Year FE Y Y Y Y Y Y
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V. Conclusion

In this paper, we apply the LASSO rather than intuition to identify unex-
pected short-lived predictors, such as the lagged returns of Family Dollar Corp.
We find that using the LASSO increases both out-of-sample fit and forecast-
implied Sharpe ratios, and we show that this increase in out-of-sample fit
comes from identifying predictors that are unexpected, short-lived, and sparse.
Finally, we document that these predictors are often the lagged returns of
stocks with recent news about firm fundamentals. Thus, the LASSO identifies
predictors that are not easy to intuit but still economically meaningful.

Initial submission: May 27, 2016; Accepted: November 17, 2017
Editors: Bruno Biais, Michael R. Roberts, and Kenneth J. Singleton

Appendix A: Numerical Simulations

In this appendix, we use the LASSO to make one-minute-ahead return
forecasts in simulated data. The goal is to show that if there are sparse signals
in the cross-section of returns, then the LASSO increases out-of-sample fit.
And, if there are not (either no signals or too many signals), then it does not.

A. Data-Generating Process

We run 1,000 simulations. For each simulation, we generate one-minute
returns for 100 stocks over the course of 7' = 1, 301 minutes using the following
data-generating process

100
Tt =04 Bl Twi1+0.001 e, (A1)

n'=1

In the equation above, r,; is the return of the n'* stock in minute ¢, Bl 18

the predictive power of the n'* stock’s lagged return in minute (¢ — 1) when

forecasting the n™ stock’s return in minute ¢, and ¢}, , ~ N(0, 1) is a noise term.
For computational convenience, we only consider a single lag.

In our main analysis, each stock’s return in minute ¢ is governed by its
exposure to the lagged returns of a collection of five stocks in minute (¢ — 1).
We use S; to denote this active set. For all 95 stocks, n' ¢ S, 8, ), = 0. For all
n' € S;, we choose the values of Blrwys @S follows:

t = 1: Prior to the start of trading, we initialize the model by randomly se-
lecting a set of five stocks to serve as S;. We determine the exposure
of every stock n € {1, ..., 100} to the lagged returns of the five stocks
n' € S using the rule

id {+0.19 w/ probability 50% A2

Pini1™ 1019w/ probability 50% .
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t > 1: Prior to each subsequent minute, we draw five random variables z,, ; S
Unif[0, 1]—that is, one for each n’' € §;_;. If a particular z,, > 0.01,
then predictor n’ € S;_; remains in S;. And, all 100 values of Bl
associated with this predictor remain the same. But, if z,, ; < 0.01, then
predictor n’ € S;_1 is replaced at random with one of the remaining 95
stocks. And, we redraw each of the 100 stocks’ exposures to this new
predictor exactly as described in equation (A.2).

Note that once a predictor gets added to S;, it remains in the active set
for (1 -0.01)/0.01 = 99 minutes on average. There are 100 stocks. So, the
collection of five predictors in the active set is too short-lived to be estimated
with an OLS regression.

B. Estimation and Forecast Timing

We use the LASSO to make one-minute-ahead return forecasts for stockn = 1
in periods £ = 302, ..., 1, 301 exactly as we did in the main text, only using an
L = 50-minute estimation window. We burn the first 250 periods to make sure
that the initial conditions are not affecting our results. This procedure produces
a total of 1,000 return forecasts per simulation. We also fit two different OLS
specifications to the same data. The first is an AR(1) model that only uses a
stock’s own lagged return as a predictor. The second is a market model that
uses lagged values of the equally weighted market as a predictor.

C. Out-of-Sample Fit

The dark-gray shading in the left panel of Figure Al shows that the average
out-of-sample fit of the LASSO’s one-minute-ahead return forecast is 0.281%.
Just like in Section I1.B, we measure the LASSO’s out-of-sample fit using the
adjusted-R? statistic. This explains why the out-of-sample fit can sometimes
be negative. By contrast, the dark-gray shading in the middle panel shows
that the average out-of-sample fit of the AR(1) benchmark is only 0.003%,
while the dark-gray shading in the right panel shows that the average out-of-
sample fit of the market benchmark is only 0.004%. The light-gray shading in
each of these panels displays the out-of-sample fit of using both the LASSO
and a benchmark model to predict future returns. In both cases, the LASSO
significantly increases the out-of-sample fit, boosting the average adjusted-R?
to more than 0.300%.

D. Oracle Regression

Is an adjusted R? ~ 0.300% big or small? To get a sense of how much out-
of-sample fit is possible given the data-generating process in equation (A.1),
we make one-minute-ahead return forecasts using two different versions of
an oracle estimator. First, we estimate an OLS regression using the five true
predictors governing the cross-section of returns in minute ¢, n’ € S;. The left
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Figure Al. Out-of-sample fit, simulated data. The figure plots out-of-sample fit of regressions
using simulated data generated by equation (A.1). x-axis: adjusted-R2 in percentage. The left panel
plots the distribution of adjusted-R2s in regressions involving only the LASSO’s one-minute-ahead
return forecast. The vertical line denotes the average adjusted-R? from these regressions. In the
middle panel, dark-gray shading denotes the distribution of adjusted-R2s in predictive regres-
sions involving only the AR(1) benchmark’s one-minute-ahead return forecast, while the light-gray
shading denotes the distribution of adjusted-R2s in regressions involving the one-minute-ahead
return forecasts from both the LASSO and the AR(1) benchmark. Vertical lines denote the average
adjusted-R?s from each specification. In the right panel, dark-gray shading denotes the distribution
of adjusted- R2s in predictive regressions involving only the market benchmark’s one-minute-ahead
return forecast, while the light-gray shading denotes the distribution of adjusted-R2s in predictive
regressions involving the one-minute-ahead return forecasts from both the LASSO and the market
benchmark. Vertical lines denote the average adjusted-R2s from each specification. The results
indicate that including the LASSO’s one-minute-ahead return forecast boosts the out-of-sample fit
in simulated data.

panel of Figure A2 shows that, even if you knew the correct five predictors to
use each minute, the best adjusted-R2 you could hope for would be 0.525%. So,
the LASSO captures a little more than half of the possible variation in returns.

This first oracle specification is labeled “Oracle (Exact)” in Figure A2. We
use this name because this specification knows exactly which five predictors
to use when making return forecasts each minute during the 50-minute es-
timation window. But, during any given estimation window, the active set of
five predictors could change. Even though there are only five stocks in S; at
any one point in time, there might be a total of six or seven stocks that were
each included in S; at some point in time during an estimation window. To see
how accounting for these additional predictors would affect our results, we also
estimate an oracle specification that uses all stocks that belonged to S; at some
point during the estimation window. The right panel of Figure A2, which we
label as “Oracle (All),” shows that including every stock that ever belonged to
the active set drops the out-of-sample fit to 0.130%.

The second version of the oracle estimator fares worse than the LASSO’s
because only five predictors belong to the active set, S;, that is used to gener-
ate the returns for minute ¢. Any additional predictors that were included in
some {S;_n}o<n<s0 but not in S; will not add any out-of-sample predictive power.
They are spurious predictors. And, the LASSO’s penalty function mitigates the
problem posed by such spurious predictors.
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Oracle (Exact) Oracle (All)
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Figure A2. Oracle out-of-sample fit, simulated data. This figure plots the out-of-sample fit
from predictive regressions using simulated data generated by equation (A.1). x-axis: adjusted
R? from a predictive regression in percent. The left panel plots the distribution of adjusted-R%s
in predictive regressions involving an oracle specification using the exact active set. The vertical
line denotes the average adjusted-R? from these predictive regressions. The right panel plots
the distribution of adjusted-R2s in predictive regressions involving an oracle specification using
every predictor that ever belonged to the active set during the estimation window. The vertical
line denotes the average adjusted-R2 from these predictive regressions. The results indicate that
the maximum out-of-sample fit that you could achieve—that is, if you knew exactly which five
predictors to include in your OLS regression—is 0.525%.

Number Selected Number Correct
5 6 7 8 9 02 06 10 14 18

Figure A3. Number of predictors, simulated data. The figure plots the LASSO’s choice of
predictors. The left panel plots the number of predictors selected by the LASSO each minute when
making its one-minute-ahead return forecasts using the data simulated from equation (A.1). The
vertical line denotes the sample average across all simulations. The right panel plots the number
of predictors selected by the LASSO that belong to the true active set, S;. The vertical line denotes
the sample average across all simulations. The results indicate that the LASSO selects a predictor
in the active set roughly 80% of the time.

E. Number of Predictors

The left panel of Figure A3 shows that the LASSO typically selects 6.736
predictors when making its one-minute-ahead return forecasts each minute.
The right panel of Figure A3 shows that, on average, only 0.779 of these
predictors belong to the true active set, S;, in any given minute. It might
seem surprising that the LASSO can achieve more than half of the oracle’s
out-of-sample fit while correctly identifying less than one-fifth of the active
set. But this is another consequence of the LASSO’s penalty function, which
shrinks weak predictors toward zero. The fact that the LASSO has such a high
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Figure A4. Out-of-sample fit, simulated data with no predictors. This figure plots the out-
of-sample fit from regressions using simulated data generated by equation (A.3), which contains
no predictors for the LASSO to find. x-axis: adjusted R2 from regressions in percent. The left panel
plots the distribution of adjusted-R2s in regressions involving only the LASSO’s one-minute-ahead
return forecast. The vertical line denotes the average adjusted-R? from these regressions. In the
middle panel, dark-gray shading denotes the distribution of adjusted-RZs in regressions involving
only the AR(1) benchmark’s one-minute-ahead return forecast, while light-gray shading denotes
the distribution of adjusted-R?s in regressions involving the one-minute-ahead return forecasts
from both the LASSO and the AR(1) benchmark. Vertical lines denote the average adjusted-
R2s from each specification. In the right panel, dark-gray shading denotes the distribution of
adjusted-R?s in regressions involving only the market benchmark’s one-minute-ahead return fore-
cast, while light-gray shading denotes the distribution of adjusted-R?s in regressions involving
the one-minute-ahead return forecasts from both the LASSO and the market benchmark. Vertical
lines denote the average adjusted-R?s from each specification. The results indicate that the LASSO

does not increase out-of-sample fit when there are no predictors.

out-of-sample fit means that it is substantially shrinking the 6.736 — 0.779 =
5.957 spurious predictors it selects each minute.

F. Placebo Tests

Finally, we conclude this appendix by looking at two alternative simulations
where the LASSO should not increase out-of-sample fit. In the first setting,
there are no predictors—that is, we simulate the returns for the 100 stocks
using the data-generating process

Fai = 0.125 x {0.001- ¢, }. (A.3)

The factor of 0.125 is chosen so that the resulting time series have the same
standard deviation as in equation (A.1). Figure A4 confirms that, when there
are no predictors for the LASSO to find, using the LASSO does not increase
out-of-sample fit.

Then, in the second setting, we look at the other extreme where the predictors
are dense—that is, we simulate the returns for the 100 stocks using the data-
generating process in equation (A.1) but with 75 rather than 5 stocks in the
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Figure A5. Out-of-sample fit, simulated data with dense predictors. The figure plots
the out-of-sample fit from regressions using simulated data generated by equation (A.1)
with an active set containing 75 rather than five stocks. x-axis: adjusted-R%Z from re-
gression in percent. The left panel plots the distribution of adjusted-R%s in regressions
involving only the LASSO’s one-minute-ahead return forecast. The vertical line denotes
the average adjusted-R? from these regressions. In the middle panel, dark-gray shading
denotes the distribution of adjusted-R2s in regressions involving only the AR(1) bench-
mark’s one-minute-ahead return forecast, while light-gray shading denotes the distribution
of adjusted-R2s in regressions involving the one-minute-ahead return forecasts from both
the LASSO and the AR(1) benchmark. Vertical lines denote the average adjusted-R2s from each
specification. In the right panel, dark-gray shading denotes the distribution of adjusted-R?s in
predictive regressions involving only the market benchmark’s one-minute-ahead return forecast,
while light-gray shading denotes the distribution of adjusted-R?s in regressions involving the
one-minute-ahead return forecasts from both the LASSO and the market benchmark. The results
indicate that the LASSO does not increase out-of-sample fit when there are more predictors than
minutes in the estimation window.

active set. Again, to keep the standard deviation of returns constant, we choose
By, using the rule

. 5 +0.19 w/ probability 50%
Biwmrt = mg % . (A.4)
e 75 —0.19 w/ probability 50% -

Figure A5 confirms that, when there are more predictors in the active set,
|S¢| = 75, than minutes in the estimation window, L = 50, the LASSO does not
increase out-of-sample fit. Thus, the LASSO really is only identifying sparse
signals.

Appendix B: Significance Test

We use the approach from Giacomini and White (2006) to assess statistical
significance using a Wald-type test outlined in Theorem 1. The results in Gia-
comini and White’s (2006) Theorem 1 are framed in terms of loss in forecasting
power, AL, .1, and a test function, &;, whereas we frame our results in terms
of changes in R?. Here is the connection.

First, let €™k denote the prediction error when using only the one-minute-

nt+1
ahead return forecast from a benchmark model, and let ef‘;ﬂll denote the pre-

diction error when using the one-minute-ahead return forecasts from both
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the benchmark model and the LASSO. And, let the loss in forecasting power
be the increase in squared prediction error from using only the benchmark
model

2 2

N (eﬁglfl) - (ezgfll) . (B.1)

If using the LASSO in addition to the benchmark model does not increase
out-of-sample fit, then

E[AL,:11]1 = 0. (B.2)

This is the null hypothesis. The alternative hypothesis is that E[AL, ;1] > 0.
Next, notice that the expected loss in forecasting power divided by the real-
ized variation in returns can be written as the change in R?:

E[AL, 1] E[(epr)’]  E[@e)?]

nia — L _ L (B.3a)
Var[ry, ;1] Var(r, ;1] Var(r, ¢11]
_ F&Eﬁlp] + 1— EEE?TI)Z] (B.3b)
Var(r, ;1] Var(ry ;1]
_ <1 _ %5??1)2]> _ (1 _ Ekr?rtnfl)z]) (B3C)
Var(r, 11l Var(ry ;1]
— R2Both _ p2.Bmk (B.3d)
_ AR%. (B.3e)

Finally, assume that A, = 1. We know that AR? — x2, so Giacomini and
White’s (2006) Theorem 1 implies that we can use a standard ¢-test to eval-
uate the statistical significance of changes in R%. The authors highlight this
observation in Comment 7 of their paper.

Appendix C: Source of Gains

As noted earlier, the term “LASSO” is an acronym standing for the Least
Absolute Shrinkage and Selection Operator. And, as suggested by this name,
the LASSO’s penalty function is performing two separate tasks.

A. Shrinkage without Selection

First, it is selecting coefficients larger than A,. In the top panel of Table C1,
we study the role of selection in the LASSO’s increase in out-of-sample fit. We
do this by examining the LASSO’s increase in out-of-sample fit relative to al-
ternative benchmark models that already incorporate some form of shrinkage.
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Table C1
Increase in OQut-of-Sample Fit, Source of Gains

This table presents the source of the LASSO’s increase in out-of-sample fit relative to the AR(3)
and market benchmarks. The increase in out-of-sample fit is measured as the percentage point
increase in adjusted-R2. Regressions are run on a randomly selected subset of 250 stocks on each
trading day from January 2005 to December 2012. R%Bmk: Out-of-sample fit of benchmark model.
AR,%: Increase in out-of-sample fit for the LASSO or alternative procedure. p-value: Probability of
observing the realized A R? under the null hypothesis of no increase in out-of-sample fit. Numbers
in parentheses are standard errors clustered by stock-day. Numbers in square brackets are 95%
confidence intervals. The top panel reports shows LASSO’s increase in out-of-sample fit relative
to alternative benchmark models that involve shrinkage but no selection. Ridge: Ridge regression
estimated using three lags. Average OLS: Weighted average of AR(3) and market benchmark
models. The middle panel shows LASSO’s increase in out-of-sample fit for alternative procedures
that involve selection but no shrinkage. Single-Best Predictor: OLS regression using the single
predictor with the highest correlation during the 30-minute estimation window. Postselection OLS:
OLS regression using predictors selected by the LASSO. The bottom panel shows the LASSO’s
increase in out-of-sample fit when using a penalty parameter that is one standard deviation too
large.

No Selection

R2Bmk [ AR? [Percentage Points] p-Value
Ridge 1.182 2.447 [2.395, 2.498] 0.000
(0.012) (0.026)
Average OLS 6.210 1.302 [1.276, 1.328] 0.000
(0.065) (0.013)
No Shrinkage
AR(3) Benchmark Market Benchmark

AR,ZL [Percentage Points]  p-Value AR,% [Percentage Points]  p-Value

Single-best predictor 0.474 [0.464, 0.485] 0.000 0.671 [0.658, 0.685] 0.000

(0.005) (0.007)
Postselection OLS 1.245 [1.218, 1.271] 0.000 2.544 [2.483, 2.604] 0.000
(0.013) (0.031)
Lambda Noise
AR(3) Benchmark Market Benchmark

AR? [Percentage Points] p-Value AR? [Percentage Points] p-Value

LASSO, ;s 0.829 [0.807, 0.851] 0.000 1.555 [1.518, 1.592] 0.000
(0.011) (0.019)

If the LASSO’s increase in out-of-sample fit were due only to coefficient shrink-
age and not to selection, then using the LASSO in addition to one of these
benchmark models should yield AR? = 0 percentage points.

We consider two different kinds of pure-shrinkage benchmarks. To start
with, we compute one-minute-ahead return forecasts using Ridge (Hastie,
Tibshirani, and Friedman (2001, Section 3.4)). The first row shows that
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shrinkage on its own actually results in a lower out-of-sample fit. And, the
LASSO increases out-of-sample fit relative to this pure-shrinkage benchmark.

The second row contains a weighted average of the one-minute-ahead return
forecasts generated by the AR(3) and market benchmarks as suggested in
Rapach, Strauss, and Zhou (2010). Consistent with their original results,
we find that averaging these forecasts generates a higher out-of-sample
fit than including each of the forecasts separately: RZP™k = 6.210% versus
R2Bmk — 5 553%. But, the LASSO still increases out-of-sample fit relative to
the weighted-average benchmark by AR? = 1.302 percentage points.

B. Selection without Shrinkage

Second, the LASSO is shrinking the point estimates of all selected coefficients
by A,. The middle panel investigates whether this shrinkage component is key
to the LASSO’s increase in out-of-sample fit. We do this by examining whether
LASSO alternatives, which do not use any sort of shrinkage, increase out-of-
sample fit by more than the LASSO does.

Again, we take two different approaches. The first row shows that using an
OLS regression that only includes the single predictor with the highest in-
sample correlation performs much worse than the LASSO. This is tantamount
to applying a forward-stepwise procedure to the standard OLS-regression
framework. The second row shows that using a two-step procedure that fits
an OLS regression to the predictors selected by the LASSO generates the same
increase in out-of-sample fit as using just the LASSO itself. This result suggests
that there are not substantial gains to be made by postselection inference. It
also implies that using an alternative sparse-selection procedure, such as the
adaptive LASSO (Zou (2006)) or elastic net (Zou and Hastie (2005)), will not
qualitatively affect our results because these procedures only differ from the
LASSO in the amount of shrinkage.

C. Lambda Noise

Finally, recall that our implementation of the LASSO selects the penalty
parameter, A,, for each stock within each 30-minute estimation window using
K-fold cross-validation. This means that our choice of A, contains some esti-
mation error. In the bottom panel of Table C1 we examine the effect of this
estimation error on our results. We do so by testing whether the LASSO still
increases out-of-sample fit even when we use a penalty parameter that is one
standard deviation too large in terms of the optimal 1,’s cross-validation error.
We find that, while using A} rather than the optimal 1, reduces the LASSO’s
gains, it does not eliminate them.*

4We look only at alternative values of A, that are larger than the optimal A,. Here is why.
If you take A, — oo, then the LASSO ignores all predictors and simply estimates the mean. So,
conditional on the LASSO converging at the optimal 1,, any alternative choice for 1, that is larger
than this optimal value will deliver well-defined parameter estimates. However, shrinking » — 0
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