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Financial-market risk, commonly measured in terms of asset-return volatility, plays a fundamental role in
investment decisions, risk management and regulation. In this paper, we investigate a new modeling
strategy that helps to better understand the forces that drive market risk. We use componentwise gradi-
ent boosting techniques to identify financial and macroeconomic factors influencing volatility and to
assess the specific nature of their influence. Componentwise boosting is capable of producing parsimo-
nious models from a, possibly, large number of predictors and—in contrast to other related tech-
niques—allows a straightforward interpretation of the parameter estimates.

Considering a wide range of potential risk drivers, we apply boosting to derive monthly volatility pre-
dictions for the equity market represented by S&P 500 index. Comparisons with commonly-used GARCH
and EGARCH benchmark models show that our approach substantially improves out-of-sample volatility
forecasts for short- and longer-run horizons. The results indicate that risk drivers affect future volatility
in a nonlinear fashion.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The importance of understanding and reliably modeling
financial risk has—again—become evident during the market tur-
bulences in recent years. Accurate volatility predictions for asset
prices are crucial when projecting risk measures, such as Value-
at-Risk (VaR) or Expected Shortfall, that are commonly used in risk
assessment, the design of risk-mitigation strategies, and for regula-
tory purposes. Although there has been a long tradition in attempt-
ing to predict asset prices (cf. Goyal and Welch, 2003; Welch and
Goyal, 2008; Cochrane and Piazzesi, 2005; Lustig et al., 2011),
the intense interest in volatility modeling began only after the
seminal works of Engle (1982) and Bollerslev (1986), and has since
become an extensively researched area in the field of financial
econometrics.

Despite this tremendous interest, the vast majority of studies on
predicting financial-market risk have been confined to condition-
ing only on past return histories as conditional information.1

Only relatively few studies have analyzed to what extent the infor-
mation contained in other financial or macroeconomic variables
helps to improve volatility predictions. Employing autoregressive
models, Schwert (1989) analyzes the relation of stock volatility
and macroeconomic factors, such as GDP fluctuations, economic
activity and financial leverage. Engle et al. (2013) use inflation and
industrial production in a mixed-frequency GARCH framework to
predict the volatility of U.S. stock returns. They show that incorpo-
rating economic fundamentals into volatility models pays off in
terms of long-horizon forecasting and that macroeconomic funda-
mentals play a significant role even at short horizons. Flannery and
Protopapadakis (2002) analyze the impact of real macroeconomic
is line is
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variables on aggregate equity returns; and Engle and Rangel (2008)
find that macroeconomic variables help predicting the low-fre-
quency component of volatility. Paye (2012) and, especially,
Christiansen et al. (2012) consider extended sets of macroeconomic
factors and a broader range of asset classes. Both use conventional
linear approaches to model log-transformed realized volatility and
include lagged volatility as well as financial and macroeconomic fac-
tors as predictors. Christoffersen and Diebold (2000) analyze the pre-
dictability of volatility for different markets on a daily basis. Their
conclusion is that when the horizon of interest is longer than ten
or twenty days, depending on the asset class, then volatility is effec-
tively not predictable. Another interesting line of research focuses on
implied volatility, (Canina and Figlewski, 1993; Christensen and
Prabhala, 1998; Jiang and Tian, 2005; Prokopczuk and Wese Simen,
2014). While this approach is perfectly appropriate for forecasting
purposes, it does not directly allow an analysis of the influence of
macroeconomic factors on financial-market volatility.

In view of the limited number of studies and their varying
approaches, there is little or no consensus concerning the useful-
ness of financial and macroeconomic variables for volatility predic-
tion. And it is this issue which we address in this paper. To gain
deeper insights into the nature of volatility processes, we employ
so-called boosting techniques. As will be demonstrated, given a
large set of potential risk drivers, boosting enables us not only to
identify the factors that drive or lead2 market risk, but also to assess
the specific nature of their impact. The selection of relevant volatility
drivers and the estimation of their particular—potentially nonlin-
ear—influence is accomplished in a data-driven fashion, requiring
only minimal subjective decisions concerning model specification.

Although boosting has been shown to be a useful approach in
many statistical applications, it has been more or less ignored in
empirical economics and finance. Among the very few exceptions
are Bai and Ng (2009), who use it for predictor selection in fac-
tor-augmented autoregressions, and Audrino and Bühlmann
(2009), who apply it to modeling stock-index volatility. In this
paper, we demonstrate the usefulness of boosting techniques for
modeling financial market risk. The approach we adopt differs
from the initial approach of Audrino and Bühlmann (2009) in sev-
eral aspects—three of which we regard as particularly relevant.
First, we go beyond the usual GARCH specification by allowing a
large number of exogenous risk drivers to affect volatility, in order
to improve our understanding of the nature of volatility processes.
Second, we employ a predictor-selection strategy that largely
avoids subjective specification decisions. Moreover, instead of the
componentwise knot selection in bivariate-spline estimation
adopted in Audrino and Bühlmann (2009), we employ componen-
twise predictor selection, giving rise to a better interpretability of
the estimated model, in order to facilitate the interpretability of
the model obtained.

This paper contributes to the existing literature on volatility
modeling in several ways. First, we investigate the role of a broad
set of potential macroeconomic and financial factors in determin-
ing future stock-market volatility. Second, by employing boosting
techniques, we gain deeper insight into the nature of the forces
driving volatility. Models obtained via boosting techniques can
be directly used for forecasting. Alternatively, specifications
obtained via boosting—i.e., the selection of risk drivers and the
description of the response behavior they induce—can serve as a
starting point for more elaborate, possibly, nonlinear model-build-
ing procedures. Third, our empirical results strongly suggest that
both the use of macroeconomic information and permitting non-
linear relationships help predicting volatility. Conducting
2 Throughout the paper we use terms like ‘‘driver,’’ ‘‘factor’’ and ‘‘leading indicator’’
interchangeably implying only the possibility of Granger causation or ‘‘usefulness for
prediction.’’
forecasting comparisons with commonly employed GARCH and
EGARCH benchmarks, we demonstrate that the boosting strategy
we adopt clearly outperforms these benchmarks in the short and,
especially, in the medium and long run. We show that the source
of the short-term improvement is attributable to the factor-selec-
tion capabilities of boosting, whereas the medium- and long-term
outperformance is due to allowing factors to have nonlinear effects
on volatility.

Although not the focus here, our modeling approach can also
serve policy and regulatory purposes. The boosting strategy chosen
identifies specific regions where factors tend to critically affect
market risk. Thus, the approach can help policy makers and regu-
lators to identify critical thresholds at which interventions may
be called for and can also help designing financial stabilization
mechanisms.

The remainder of the paper is organized as follows. Section 2
details and illustrates the specific boosting algorithm adopted.
Section 3 discusses the volatility measure and predictor variables
employed, the way multi-step forecasting comparisons are
conducted, and the results we obtain. Section 4 concludes.
2. A boosting approach to modeling volatility

Boosting, as put forth in Freund and Schapire (1996), was orig-
inally designed to solve binary classification problems. To do so
and to achieve any desirable degree of accuracy, it suffices that
the classifier (also called base learner) performs only slightly better
than random guessing (Kearns and Valiant, 1994; Schapire et al.,
1998). Friedman (2001) placed boosting in a regression framework,
viewing it as a gradient descent technique. Boosting is especially
suitable in applications where there is a large number of—possibly
‘‘similar’’—predictors, as it curbs multicollinearity problems by
shrinking their influence towards zero.

Componentwise boosting combines model estimation and
model selection in a unified, iterative framework and has a number
of advantages: (i) It selects relevant predictors for the variable of
interest and ignores redundant ones. (ii) It easily handles high-di-
mensional situations where the number of covariates can even
exceed the number of observations, a situation where classical
approaches, such as (nonlinear) regression analysis and maximum
likelihood estimation, typically fail. Moreover, these latter
approaches are only applicable after the model has been fully spec-
ified. (iii) It captures nonlinear dependencies. (iv) In contrast to
other flexible prediction methods (such as random forests), com-
ponentwise boosting generates results that can be interpreted
straightforwardly. (v) Boosting has very good properties concern-
ing prediction, comparable to Lasso. For the linear model, consis-
tency of L2-boosting in prediction norm was shown in Bühlmann
(2006).

Before we start with a more detailed explanation of boosting, let
us remark on the difference between boosting and factor modeling
and the problem of statistical significance. Linear factors models
are usually applied for dimension reduction in large data sets
and each factor represents a linear combination of variables. This
makes a direct, variable-specific interpretation of factor models
more difficult. In contrast, boosting identifies individual variables
that influence the dependent variable, not combinations of poten-
tial drivers. As of yet, a drawback of boosting concerns significance
testing. Sofar, there are no results for inference. This is still subject
of ongoing research. As far as prediction is concerned, the focus
here, superior performance has, however, been demonstrated.

Volatility modeling via gradient boosting was first considered in
Audrino and Bühlmann (2003), who adopted a GARCH-type frame-
work, assuming a stationary return process of the form

yt ¼ rtet ; et �iid Nð0;1Þ and a rather general dependence of rt on
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past returns. Their approach aims purely at prediction, as the
resulting model has limited interpretability. A similar model, with
neural networks as base learners, was proposed by Matías et al.
(2010).

In the analysis below, we use so-called componentwise gradient
boosting (see Bühlmann and Yu, 2003; Bühlmann and Hothorn,
2007), which is designed to simultaneously select relevant predic-
tors and to capture the specific nature of their impact. Next, we
briefly summarize and motivate our strategy to volatility model-
ing. More details of the method and a small simulation study illus-
trating the approach are given in the appendix.

The modeling framework we choose builds on the exponential
ARCH specification of Nelson (1991), but is augmented to
include—in a rather flexible way—a large number of risk drivers
that potentially affect volatility. The total number of predictors
can be very large and may, in principle, even exceed the sample
size. The specific form of our model is given by

yt ¼ expðgt=2Þet

gt ¼ gðztÞ ¼ b0 þ f timeðtÞ þ f yrðntÞ þ f monthðmtÞ

þ
Xs

j¼1

f jðyt�jÞ þ
Xq

k¼1

Xp

j¼1

f k;jðxk;t�jÞ;
ð1Þ

where yt ¼ logðPt=Pt�1Þ denotes the logarithmic return, Pt is the

asset prices at time t, and et �
iid Nð0;1Þ. The r-dimensional vector

zt ¼ 1; t;nt;mt; yt�1; . . . ; yt�s; x1;t�1;ð . . ., x1;t�p; . . . ; xq;t�1; . . . ; x1;t�p
�>,

with r ¼ sþ qpþ 4, contains the predictor realizations available at
or prior to time t � 1. To keep the exposition simple, we assume,
without loss of generality, that gt has zero mean and, thus, omit b0.

We specify all f �ð�Þ functions in (1) as regression trees. That is,
for any component zi;t , i ¼ 1; . . . ; r, in zt (in the following simply
denoted by z), f �ðzÞ is given by

f :ðzÞ ¼
XJz

j¼1

czjIRzj
ðzÞ;

where IRzj
ðzÞ denotes the indicator function, i.e., IRzj

ðzÞ ¼ 1, if
z 2 Rzj � R, and IRzj

ðzÞ ¼ 0, otherwise; the Rzj; j ¼ 1;2; . . . ; Jz; Jz 2 N,
denote disjoint regions (or regimes) partitioning the domain of z;
and czj denotes the corresponding constants representing the
impact of z on gt in that particular region. The number of regimes,
Jz, the boundaries of the regions, Rzj, and the czj-values are not spec-
ified in advance, but rather determined by the boosting algorithm.
Functions f timeð�Þ; f yrð�Þ and f monthð�Þ capture possible deterministic
trend and seasonal components in volatility; f jðyt�jÞ; j ¼ 1; . . . ; s,
capture the influence of past returns; and f k;jðxk;t�jÞ; j ¼ 1; . . . ; q,
are functions of lagged predictors. The selection process typically
excludes some, if not many, of the r predictors from (1), implying
that only a subset of the initial r predictors are relevant for explain-
ing volatility. In other words, we may intentionally specify a broad
set of predictor candidates, as it tends to get rigorously pruned by
the boosting algorithm.

Regression trees can capture complex forms of dependence by
recursively partitioning the predictor domain into regions with
similar response behavior and assigning a constant response value
to each regime.3 In contrast to the ‘‘smooth’’ specifications of classi-
cal nonparametric regression models, regression trees can handle
abrupt changes which makes them an attractive choice when mod-
eling financial-market volatility. Moreover, regression trees have the
advantage that, in autoregressive dynamic settings, the question of
explosive behavior does not arise, as the response is described by
3 For a detailed discussion on regression trees, see Breiman et al. (1984). Below, we
use so-called conditional inference trees (Hothorn et al., 2006).
(sets of) constants rather than multiplicative autoregressive coeffi-
cients. To decide on the partitioning of the domains, we maximize
the absolute value of the standardized difference between the means
of the two adjacent groups among all possible split positions (see
also Hothorn et al., 2006).

Our setup allows for the presence of complex volatility
responses that go beyond asymmetry—a key feature, for example,
of exponential GARCH models that allow volatility responses to
negative shocks to differ from those to positive ones—and permits
multiple regimes that are unknown in advance and determined in
a data-driven way.4 The decision, which of the drivers under consid-
eration are relevant, is also part of the data-driven specification
process and requires no prior information. As a measure of market
risk we use realized variance rather than the conventional variance
modeled in a GARCH framework, since unobservable covariates, such
as lagged variance or error terms, make the selection process non-
trivial if not impossible.

We estimate (1) via componentwise gradient boosting,5 which
derives the final model in a highly flexible way by sequentially com-
bining a series of individual predictor components. It, thus, provides
a joint procedure for model specification and estimation. Our esti-
mation minimizes the expectation of some (with respect to g differ-
entiable) loss function, L, and solves

ĝt ¼ arg min
g

1
T

XT

t¼1

Lðyt ;gðzt ; bÞÞ; ð2Þ

where b denotes the unknown parameter vector to be estimated in
a parametric setting. The solution to (2) is derived by reducing the
empirical loss in successive steps. The final b-estimate is given sim-
ply by the sum of the estimates obtained in each step and has—in
contrast to alternative flexible approaches like bagging or random
forests—a direct interpretation.6

To estimate the desired characteristic of the conditional distri-
bution, the loss function, L, needs to be appropriately specified.
Under the assumption yt jzt � Nð0; egt Þ, the negative conditional
log-likelihood loss function and the negative gradient are,
respectively,

Lt ¼
1
2

gt þ
y2

t

egt

� �
and gt ¼ �

@Lt

@gt
¼ 1

2
y2

t

egt
� 1

� �
: ð3Þ

Instead of fitting all components of vector zt simultaneously, they
are fitted individually using the specified base-learner function. At
each boosting step, only one component is included, namely the
one which correlates most strongly with the negative gradient.
Such a step can be viewed as a partial ‘‘sub-solution’’ to the global
optimization problem. As base learner we use regression trees with
two nodes. Doing so, the algorithm simply splits a predictors sam-
ple range optimally into two disjoint regions and assigns constant
volatility response values to each region. This seems to be a rather
crude way of approximating complex volatility responses. However,
by iterating this procedure sufficiently many times, we can—as
illustrated in Appendix B—capture rather elaborate response pat-
terns. The estimates obtained during an iteration do not fully enter
but rather in terms of a (small) fraction. This form of shrinkage
helps to dampen the ‘‘greediness’’ of the gradient technique, which
may otherwise be prone to neglecting correlated predictor candi-
dates, and to cure the typical instability of forward selection meth-
ods (Breiman, 1996).
See Hothorn et al. (2013) for a software implementation.
6 To avoid overfitting, we start with controlling the bias-variance tradeoff by using

a low-variance/high-bias specification. In subsequent steps, the bias will be gradually
reduced, with the variance increasing at a slower rate (Bühlmann and Yu, 2003).



Table 1
Description of the financial, macroeconomic and lagged volatility predictor variables employed.

Variable Abbrev. Source Description

A. Equity Market Variables and Risk Factors
Dividend Price Ratio (Log) Shiller D-P Dividends over the past year (12-month moving sum) relative to current

market prices (in logs)
Earnings Price Ratio (Log) E-P Shiller Earnings over the past year (12-month moving sum) relative to current

market prices (in logs)
US Market Excess Return MKT Fama French Fama–French’s market factor: U.S. stock market return minus one-month T-Bill rate
Size Factor SMB Fama French Fama–French’s SMB factor: Return on small stocks minus return on big stocks
Value Factor HMLFX Fama French Fama–French’s HML factor: Return on value stocks minus return on growth stock
Short Term Reversal Factor STR Fama French Fama–French’s short-term reversal factor: Return on stocks with low prior

one-month return minus return on stock with high prior return
S&P 500 Turnover TURN CRSP Turnover for the S&P 500
S&P 500 Return mreturns Datastream Monthly log returns of the S&P 500
CBOE Market Volatility Index VIX CBOE Measure of the implied volatility of S&P 500 index options
Log realized variance LRVar Datastream Log realized variance defined in Eq. (4)
Change of LRVar LRVar.c Datastream Change of the log realized variance

B. Interest Rates, Spreads and Bond Market Factors
T-Bill Rate (Level) T-B Goyal Welch Three-month T-Bill rate
Rel. T-Bill Rate RTB Goyal Welch T-Bill rate minus its 12 month moving average
Long Term Bond Return LTR Goyal Welch Rate of return on long term government bonds
Rel. Bond Rate RBR Goyal Welch Long-term bond yield minus its 12 month moving average
Term Spread T-S Goyal Welch Difference of long-term bond yield and three-month T-Bill rate
Cochrane Piazzesi Factor C-P Cochrane Piazzesi Measure of bond risk premia; recursively estimated based on Fama-Bliss data

C. FX Variables and Risk Factors
Return on Dollar Risk Factor DOL Lustig et al. (2011) FX risk premium measure; average premium for bearing FX risk
Average Forward Discount AFD Lustig et al. (2010) Aggregate predictor of FX returns calculated from forward rates and spot rates

D. Liquidity and Risk Variables
Default spread DEF Goyal-Welch Measure of default risk: BAA minus AAA corporate bond yields
FX average bid-ask spread BAS Menkhoff et al. (2011) Bid-ask spreads as measure of illiquidity in foreign exchange markets
Pastor-Stambaugh liquidity factor PS Pastor Stambaugh Measure of stock market liquidity based on price reversals
TED spread TED Datastream Measure of illiquidity: LIBOR minus T-Bill rate

E. Macroeconomic Variables
Inflation Rate, Monthly INFM Datastream Monthly (log) growth rate of the U.S. consumer price index
Inflation Rate, YoY INFA Datastream Year-over year (log) growth rate of the U.S. consumer price index
Industrial Production Growth, Monthly IPM Datastream Monthly (log) growth rate of U.S. industrial production
Industrial Production Growth, YoY IPGA Datastream Year-over year (log) growth rate of U.S. industrial production
Housing Starts H-S Datastream Monthly change in housing started
M1 Growth, Monthly M1M Datastream Monthly (log) growth rate of U.S. M1
M1 Growth, YoY M1A Datastream Year-over-year (log) growth rate of U.S. M1
Orders, Monthly ORDM Datastream New orders, consumer goods and materials; monthly growth rate
Orders, YoY ORDA Datastream New orders, consumer goods and materials; year-to-year growth rate
Return CRB Spot CRB Datastream Commodity price spot index; annual log difference
Capacity Utilization CAP Datastream Level to which the productive capacity is used
Employment Growth EMPL Datastream Change in the employed population
Consumer Sentiment SENT Datastream Monthly change in University of Michigan consumer sentiment
Consumer Confidence CONF Datastream Monthly change in consumer confidence index
Diffusion Index DIFF Datastream Philadelphia Fed Business Outlook Survey Diffusion Index
Chicago PM Business Barometer PMBB Datastream Leading indicator of economic health; survey of purchasing managers
ISM PMI PMI Datastream Monthly change in purchasing manager index
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As an alternative to two-node regression trees, other specifica-
tions, such as linear or spline functions, could be chosen as base
learners. For the application at hand, our simple regression-tree
specification turned out to be the better choice. This seems largely
due to the fact that, in addition to being able to capture nonlinear
response patterns, it can best cope with the abrupt and asymmetric
volatility responses we observe. Tree specifications are less prone
to outliers than linear models and, in contrast to higher-order
spines, behave nicely at the borders.

In summary, the modeling strategy we adopt is rather flexible
and has the advantage of providing us with interpretable parame-
ter estimates, so that it should help us to gain insights into the role
of particular risk drivers and to better understand the nature of
volatility processes. To what extent this translates into better risk
predictions will be investigated next.
3. Boosting stock-market volatility

To examine the usefulness of boosting for modeling and pre-
dicting equity market volatility, we take the S&P 500 stock index
as a representative candidate and entertain a range of financial
and macroeconomic factors as potential volatility drivers. Next,
after describing the data and detailing the boosting specifications,
we present the empirical results in two parts. First, we compare
the predictive performance of the boosting approach with that of
the benchmark candidates and, then, we take a closer look at the
causes for the improvements in forecasting accuracy. Finally, we
briefly discuss the nature of the impact the driving factors have
on stock market volatility.

3.1. Data and model specification

Our monthly S&P 500 index data cover the period December
1989 to December 2010, amounting to 253 months in total. As
potential volatility drivers, we consider the 40 financial and
macroeconomic factors summarized in Table 1. These factors can
be divided into five categories:

(A) Equity Market Variables and Risk Factors: This set comprises
well-known equity factors, such as dividend price ratio,



10 We compute multi-step (E) GARCH forecasts recursively. By fitting GARCH
models, using data sampled at each frequency compatible with horizons h ¼ 1; . . . ;6,
we also computed nonrecursive h-step forecasts. These, however, turned out to be
rather poor and are not reported here.

11 Christiansen et al. (2012) use an autoregressive model for realized volatility as
benchmark.

12 Various advanced procedures for variable selection exist, such as Least Angle
Regression (LARS, Efron et al., 2004) or the Least Absolute Shrinkage and Selection
Operator (LASSO, Tibshirani, 1996). They are, however, geared towards modeling
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earnings price ratio and Fama–French factors. Moreover, we
include returns of the MSCI world stock market index, the
implied volatility index (VIX) derived from S&P 500 index
options traded on the Chicago Board Options Exchange,
and the turnover of the S&P 500 which might reflect traders’
uncertainty about future market valuations.

(B) Interest Rates, Spreads and Bond Market Factors: This category
comprises of interest rates and spreads employed by Welch
and Goyal (2008), namely, the T-Bill rate, relative T-Bill rate,
long term bond return and term spread. Moreover, the
Cochrane and Piazzesi (2005) bond factor is included.

(C) FX Variables and Risk Factors: This set contains the return on
Dollar risk factor and average forward discount. For both we
refer to Lustig et al. (2011).

(D) Liquidity and Risk Variables: As liquidity measures for differ-
ent markets, we use the default spread, TED spread, FX aver-
age bid-ask spread (Menkhoff et al., 2011) and the Pastor
and Stambaugh, 2003 liquidity factor.

(E) Macroeconomic Variables: This is the largest, group of factors,
containing the inflation rate, industrial production, housing
starts, M1 growth, orders, return CRB spot, consumer confi-
dence and others.

We include the first and second lag of all 40 factors as potential
predictors. We include two lags of log realized variance and
changes in log realized variance to capture temporal and state
dependence in volatility, and also allow for seasonal components.
This gives us altogether r ¼ 84 predictors.

As volatility cannot be observed directly, we follow French et al.
(1987) and Schwert (1989)7 and use monthly log realized variance,
calculated from daily returns, as proxy for market volatility,8 i.e.,

LRVart ¼ log
XMt

s¼1

r2
t;s; t ¼ 1; . . . ; T; ð4Þ

where rt;s denotes the sth daily return in month t; and Mt the
number of trading days in month t. Fig. 1 shows the log realized-
variance series for the equity market in the chosen period.

3.2. Predictive performance

The predictive performance is examined via rolling-window
forecasting for the period June 2002 to September 2010. Starting
with a history of 153 months, we move the fixed-length window
forward month by month, re-estimate, and generate a sequence
of one-step-ahead forecasts for 100 months. Applying a direct
forecasting approach,9 we also produce multi-period forecasts for
horizons of up to six months by adapting (1) accordingly, i.e.,

ytþh ¼ expðgtþh=2Þetþh; h ¼ 1; . . . ;6;
gtþh ¼ b0 þ f timeðt þ hÞ þ f yrðntþhÞ þ f monthðmtþhÞ

þ
Xs�1

j¼0

f jðyt�jÞ þ
Xq

k¼1

Xp�1

j¼0

f k;jðxk;t�jÞ:
ð5Þ

For two reasons, we adopt a direct forecasting approach rather than
a recursive one, i.e., deriving chains of six one-step-ahead predic-
tions. First, whereas recursive predictions with the GARCH bench-
mark models is the obvious choice, the use of exogenous variables
in our boosting approach would either require to also predict those
7 Note that Schwert (1989) also investigates the influence of the volatility of
macroeconomic variables on stock market volatility, but finds only weak evidence.
We, therefore, do not consider macroeconomic volatility as drivers.

8 For an in-depth review of the realized-volatility concept, we refer to Andersen
et al. (2006).

9 For direct forecasting via boosting in a nonlinear time series context, see
Robinzonov et al. (2012).
variables in some recursive manner or to use the observed values
that were realized after the time period the prediction is made.
The former is highly impractical as it requires predictive models
for 38 variables; and the latter is impossible in real-time forecasting
applications. The second, and here more important reason is that
we are interested in examining how the impact of risk drivers
change as the forecasting horizon grows. In other words: We want
to understand which drivers matter in the short and in the long
term, and how does the nature of their impact change.

To assess the predictive performance, we compare multi-step,
out-of-sample boosting forecasts to their (recursive) counterparts
derived from a GARCH(1,1) and an Exponential GARCH(1,1)
(Nelson, 1991) benchmarks.10 Clearly, there are many potential
alternatives that could serve as a benchmark.11 However, Hansen
and Lunde (2005)—addressing the question: ‘‘Does anything beat a
GARCH(1,1)?’’—conclude that there are essentially no or only very
little benefits from using more elaborate models, so that the
GARCH(1,1) model can be regarded as a challenging benchmark
and the EGARCH model is a natural competitor in the context of
our model specification.

By allowing exogenous variables to enter our volatility model,
the comparison with the standard benchmark models may not
seem fair. However, the estimation of GARCH models given a large
set of potential explanatory variables and a short data history, as is
the case here, is not obvious—especially, when the predictors affect
the conditional variance in a complex nonlinear fashion. The ability
to meaningfully select relevant drivers and to specify the nature of
their influence is the strength of componentwise boosting.12

We evaluate the forecasting performance in terms of the mean
squared prediction error, i.e., the mean of the squared differences
between the realized volatility and the h-step-ahead forecast given
by (5).13

The results, reported in Table 2, show that model (1) obtained
via componentwise boosting clearly outperforms the GARCH and
EGARCH benchmark at all horizons considered. As the predictions
of all three models are virtually unbiased, the lower MSEs for the
boosting model result from the fact that it produces less extreme
prediction errors than the benchmarks.

To assess the statistical significance of the forecasting improve-
ments, we apply the Diebold–Mariano test (Diebold and Mariano,
1995) in the modified version of Harvey et al. (1997). The null
hypothesis of the test presumes that benchmark forecasts are more
accurate than those of the proposed model, so that rejection of the
null favors our approach. The p-values of the modified Diebold–
Mariano test are reported in Table 3. It turns out that boosting fore-
casts are significantly better for all medium- and long-term hori-
zon and very competitive in short-term. We also conducted the
Giacomini–White test (Giacomini and White, 2006). The results,
reported in Table 3, confirm those of the Diebold–Mariano test.
conditional means rather than conditional variances, which is the focus here. For
discussions of the selection properties of boosting over LARS- and LASSO-type
variable-selection methods see, for example, Bai and Ng (2009) and Mayr et al. (2012).

13 The h-step expected squared prediction error is given by ERRtþh ¼
ðRVtþh � ĝtþhÞ

2
;h ¼ 1; . . . ;6, where t ¼ 154; . . . ;253, i.e., the last one hundred obser-

vations covering the period August 2002 to December 2010, and is measured by the
average of the observed squared errors. Employing other loss functions, such as the
mean absolute error (MAE), gave similar results and left the ranking of the models
unchanged.



−8

−7

−6

−5

−4

−3

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

LR
Va
r t

Fig. 1. Time series of monthly realized variance (in logarithms), as defined by (4), of
the S&P 500.

Table 3
Results for the modified Diebold–Mariano test (DM test) and Giacomini–White test
(GW test) for the benchmark models GARCH and EGARCH, with ⁄, ⁄⁄ and ⁄⁄⁄
indicating 10, 5, and 1% significance, respectively.

Horizon GARCH EGARCH

DM test GW test DM test GW test

1 0.275 0.137 0.075⁄ 0.132
2 0.060⁄ 0.219 0.107 0.347
3 0.009⁄⁄⁄ 0.027⁄⁄ 0.035⁄⁄ 0.056⁄

4 0.001⁄⁄⁄ 0.010⁄⁄⁄ 0.001⁄⁄⁄ 0.002⁄⁄⁄

5 0.002⁄⁄⁄ 0.006⁄⁄⁄ 0.010⁄⁄⁄ 0.012⁄⁄⁄

6 0.006⁄⁄⁄ 0.014⁄⁄ 0.038⁄⁄ 0.053⁄
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Thus, allowing for exogenous factors and nonlinear dependencies
helps to improve volatility forecasting for all horizons.

3.3. Where does the improvement come from?

As we have seen in the previous section, the model obtained by
boosting delivers superior forecasting results. As the model
includes macroeconomic explanatory variables and allows them
to affect volatility in a nonlinear fashion, an obvious question is:
Where does the predictive improvement mainly come from? Is it
simply the inclusion of the additional variables, or does the nonlin-
ear specification improve predictive performance?

As it turns out, the gain in forecasting accuracy is largely attri-
butable to both the explanatory power of the drivers allowing
them to affect volatility in a nonlinear fashion. However, the role
of the two phenomena changes as the forecasting horizon
increases. To disentangle these two sources of improvement, we
adjust model (1) and use linear instead of constant base learners
by specifying

yt ¼ expðgt=2Þet

gt ¼ b0 þ
Xs

j¼1

bjyt�j þ
Xq

k¼1

Xp

j¼1

ck;jxk;t�j ¼: gðztÞ;
ð6Þ

where the deterministic (seasonal) components are omitted.
For the following discussion, we label the linear specification

(6) by ‘‘L1’’ and the tree-based model (1) by ‘‘T1.’’ A comparison
of L1 and T1 reveals to what extent the gain in accuracy can be
attributed to the nonlinear structure. Furthermore, we specify a
linear model, labeled ‘‘L0’’ that is nested in L1 and which includes
only past returns but omits all macroeconomic factors. A compar-
ison between L0 and L1 reveals to what extent gains can be attrib-
uted to the drivers in the linear setting. Analogously, we entertain a
fourth, tree-based model, labeled ‘‘T0’’, which includes only lagged
returns and, thus, is nested in T1. Altogether, we consider the four
models summarized in Table 4.

We subject the four models to the same forecasting exercise
described in Section 3.1. The results are summarized in terms of
Table 2
Mean squared errors of boosting and benchmark models.

Horizon GARCH EGARCH Boosting

1 0.588 0.753 0.527
2 0.927 0.903 0.712
3 1.025 1.107 0.770
4 1.122 1.526 0.742
5 1.029 1.331 0.664
6 1.353 1.432 0.927
boxplots of the 100 squared prediction errors for each of the six
forecasting horizons shown in Fig. 2. The boxplots indicate that
models making use of exogenous information, i.e., specifications
L1 and T1, drastically increase forecasting accuracy. Thus, a sub-
stantial part of the gain in accuracy can be attributed to the predic-
tive power of the selected macroeconomic drivers. The linear
specification with exogenous drivers, L1, delivers the best one-
and two-step predictions. Beyond that, the nonlinear tree-specifi-
cation, T1, dominates all other specifications. This observation is
in line with Maheu and McCurdy (2002) and Sensier and van
Dijk (2004), who argue that changes in volatility are more appro-
priately captured when allowing for instantaneous breaks and
large, abrupt changes rather than gradual adjustments—features
for which regression trees are particularly well suited. Only for
short-term forecasts does the linear specification outperform the
coarser regression-tree setup. For longer-term forecasts (here, after
step four), however, the predictive performance of the linear spec-
ification drops to that of the benchmark models.
3.4. What are the influential drivers?

From a theoretical and applied finance point of view and also
from a policy-making perspective, it is of interest to identify the
risk drivers in equity markets and to assess the specific manner
in which they affect volatility. Such knowledge could, for example,
be used for developing early-warning mechanisms for market tur-
bulences or designing market-stabilization strategies. For this pur-
pose, the proposed modeling strategy is much better suited than
the usual GARCH framework with its black-box nature. Boosting
enables us to extract information contained in risk-driving factors
that can be helpful for regulation and policy making.

In this section, we present the general volatility response pat-
terns for all horizons considered and, taking a somewhat longer-
term perspective, illustratively discuss the results for the six-
month horizon in more detail. The results for the other horizons
can be interpreted in a similar way. Appendix C shows the plots
of the full set of relevant volatility drivers for horizons one through
six.

A first observation is that for all horizons only a fairly small
number of macroeconomic and financial variables are selected as
drivers of market volatility. Their number varies between six and
nine. The VIX is identified as an important predictor for realized
volatility and is preferred by the selection mechanism across all
horizons.14 This suggests that the options market provides informa-
tion that leads realized volatility. The VIX signals changes in both
positive and negative directions. In principle, two VIX regimes can
be identified: values below about 15–18 indicate a decrease whereas
values above that range an increase in future S&P500 volatility. The
fact that this phenomenon holds for horizons beyond two months
14 The fact that, in a GARCH setting, option-implied volatility is a helpful volatility
predictor beyond that what past (squared) returns offer has been shown before (cf.
Claessen and Mittnik (2002) and references therein).



Table 4
Overview of models specified to identify the sources of predictive performance.

Label Specification

L0 Linear with lagged returns
T0 Tree with lagged returns
L1 Linear with lagged returns + exogenous variables
T1 Tree with lagged returns + exogenous variables

Fig. 2. Forecasting comparison for horizons one through six months between the
four models L0, L1, T0 and T1 summarized in Table 4. L⁄ and T⁄ denote linear and
tree-based models, respectively, and ⁄0 (⁄1) denote models that exclude (include)
all exogenous drivers.
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reflects the persistency of the effects the VIX has. Also, log realized
volatility (LRVar) itself, defined in (4), is a strong indicator, which
signals changes in volatility for up to five months in advance.

In view of the full set of results shown in Appendix C, we can
conclude that VIX and LRVar belong to the very few variables cap-
able of forecasting a decrease in realized volatility. The others are
TED spread and new orders of consumer goods (monthly and
annually). All other macro variables appear to be only useful for
predicting volatility increases.

In the following, we discuss the role of the drivers for the real-
ized volatility of the S&P500 in more detail, focusing on the long-
est, i.e., the six-period-ahead horizon. We present the chosen
factors, discuss their role and graphically focus on the impact of
the most relevant drivers in Fig. 3. In that figure, the ticks along
the horizontal axes show the data that were observed for the
respective driver during the sample period. We identify the follow-
ing leading variables: VIX, TED spread, orders (year over year),
HML factor, and CRB returns. The built-in variable selection process
excluded all other drivers considered. Fig. 3 shows the first and
second lags of two important factors. As is to be expected, not all
the lags of the relevant predictors relate to future realized volatil-
ity. For example, TED spread (Fig. 3, bottom panel), orders and HML
factor enter only with their first lag, whereas CRB returns displays
a longer-lived impact and enters with its second lag. For VIX both
lags are selected and shown in Fig. 3 (upper panel).

VIX values (first lag) below 17 indicate a drop in the volatility
and values above this threshold an increase. Specifically, values
below 17 suggest a decrease in volatility by 0:40 on the log scale,
which corresponds to a decrease of 18% in the volatility (or stan-
dard deviation),15 while values above this threshold signal a volatil-
ity increase by 0:25 on log scale (or 13% increase in volatility). For
15 With volatility being specified as rt ¼ egt=2, changes in gt have a multiplicative
effect on rt . If gt decreases by 0:4, then, rt decreases by about 18% since
e�0:4=2 � 0:82.
the second lag (Fig. 3, upper panel) we observe three regimes, but
the effects are less pronounced compared to the first lag. Values
below 17, again, signal a decrease (�0:15 on log scale or �7%) and
higher values a slight increase in volatility. Clearly, the VIX, which
is the options-implied measure of S&P 500 volatility, is identified
as a main predictor beyond lagged log realized variance. Overall,
given the persistence of volatility, the observation that past volatility
is an important predictor for future volatility is less of a surprise.

The TED spread can be interpreted as a measure of illiquidity.
Values below 0:01 have a slight negative effect on next period’s
volatility. TED-spread values between 0:011 and 0:014 tend to
increase volatility by approximately 17% and values above 0:014
by 28%. High levels of illiquidity generate uncertainty and ner-
vousness among market participants and, thus, drive up volatility.
The TED spread has been widely recognized as an indicator of per-
ceived credit risk (cf. Brunnermeier (2009) and Mittnik and
Semmler (2015) and references therein). Our findings suggest that
increased TED spread also spills over and induces risk into equity
markets.

Another finding is the regime-dependence of volatility with
respect to new orders of consumer goods and materials. A moder-
ate or strong drop in orders increases the future log realized vari-
ance slightly, whereas small drops or increases have no influence.
Higher orders of consumer goods signal a positive development for
producing companies, taking risk out of financial markets, whereas
strong decreases induce uncertainty and jumps in stock-market
volatility. Orders are known to be a reliable leading indicator for
the economic growth. An increase in orders boosts companies’
future earnings, lowers debt-equity ratios and, thus, market risk.

4. Conclusions

We have used boosting techniques to assess the influence of a
wide range of potential financial and macroeconomic risk drivers
for the S&P 500 index. The specific approach chosen relies regres-
sion trees as fundamental building blocks and allows us to identify
influential volatility drivers together with the particular form of
their impact.

Our empirical results give insight into the ‘‘anatomy’’ of volatil-
ity by identifying relevant drivers and by estimating for each driver
thresholds that partition its domain into areas with similar impact
on volatility. By doing so, nonlinear dependencies can be identified
in a parsimonious fashion. We do, indeed, find highly nonlinear
influences of financial drivers on volatility. This extends the exist-
ing research, which has primarily concentrated on linear volatility
dynamics. Our results show that allowing for both macroeconomic
information and the presence of nonlinear effects helps to assess
future behavior of market volatility and to improve predictive
performance.

One- through six-month-ahead out-of-sample forecasting
applications to monthly log realized variance suggest that our
boosting approach performs very favorable. For all the six forecast-
ing horizons considered, the commonly-used GARCH and EGARCH
benchmarks are clearly outperformed. What makes the approach
appealing is the straightforward and systematic incorporation of
exogenous risk drivers. Short-term forecasts also benefit when
the exogenous drivers enter the model in a linear fashion. In the
medium and long term, however, we gain accuracy by allowing
volatility to react asymmetrically and with jumps. These findings
confirm those of Engle et al. (2013), who report that the inclusion
of macroeconomic variables improves long-run predictability of
U.S. stock-return volatility, and are also compatible with those of
West and Cho (1995) and Christoffersen and Diebold (2000),
who, using information sets that do not contain macroeconomic
variables, find that the quality of volatility forecasts decays quickly
as the forecasting horizon grows. The empirical results presented



Fig. 3. The two most relevant predictors for the six-month-ahead S&P 500 volatility. Each row shows the estimated impact of the first and second lag of the volatility index
(VIX) and TED spread, respectively.
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here suggest that there is only a small set of—rather plausible—fac-
tors which primarily drive future S&P 500 volatility: volatility
itself, captured in terms of the implied volatility index (VIX) and
log realized variance (LRVar), the TED spread, and new orders of
consumer goods and materials.

The application demonstrates that boosting is well suited for a
unified framework for predictor selection and estimation in the
context of volatility modeling. This is especially the case in the
presence of many potential (and possibly highly dependent) risk
drivers. An advantage of the approach is that it can cope with sit-
uations where we have—relative to the sample size—a large set of
potential predictors. Apart from being useful in terms of variable
selection and forecasting, models obtained via boosting can also
provide a promising starting point for specifying nonlinear, para-
metric volatility models.

Acknowledgments

We would like to thank James Hamilton, Torsten Hothorn and
Neil Shephard for invaluable discussions and feedback. We are
grateful to the participants of the 18th International Conference
Computing in Economics and Finance in Prague (2012), the SMU-
ESSEC Symposium on Empirical Finance and Financial
Econometrics in Singapore (2012), the Annual Meeting of the
German Statistical Society in Vienna (2012), the 1st Vienna
Workshop on High Dimensional Time Series in Macroeconomics
and Finance 2013 and the Boston College/Boston University
Econometrics Workshop 2013 for helpful comments. We are par-
ticularly thankful to two anonymous referees whose comments
and suggestions helped to greatly improve the paper.
Appendix A. Implementation of componentwise boosting
algorithm

In our implementation, we follow Friedman (2001) and shrink
the coefficient towards zero. Shrinkage helps to dampen the
‘‘greediness’’ of the gradient technique, which may otherwise be
prone to neglecting correlated predictor candidates, and ‘‘cures’’
the typical instability of forward selection methods (Breiman,
1996). The ‘‘appropriate’’ shrinkage, set by the shrinkage parame-
ter m, is empirically determined and can safely vary such
m 2 ½0:01;0:3�. The specific choice for m has little effect on the final
estimates, but rather affects the computational time. The updating

in the m-th iteration is then given by ĝ½m� ¼ ĝ½m�1� þ mf̂ ½m�ŝm
, where

ĝ½m� ¼ ðĝ½m�ðz1Þ; . . . ; ĝ½m�ðzTÞÞ
> and f̂ ½m�ŝm

¼ ðf̂ ½m�ŝm
ðzŝm ;1Þ; . . . ; f̂ ½m�ŝm

ðzŝm ;TÞÞ
>

are vectors of length T and ŝm 2 f1;2; . . . ; rg. Fitting the base learner
in a given iteration modifies the gradient evaluation so that, with
each iteration, covariates and gradients become increasingly
orthogonal.

Without stopping, boosting with stumps will inevitably overfit,
making the model useless for prediction. Hence, an appropriate
stopping rule is essential. Note that the conditional observations
yijzi and yjjzj, for i – j; i; j 2 f1; . . . ; Tg are, by assumption, indepen-
dent. We, therefore, determine the optimal number of boosting
steps via bootstrapping by uniformly sampling with probability
1=T and with replacement from the observed data. Doing so, each
sample makes use of roughly 64% of the original data for training,
with the remaining, unselected data points used for evaluation. We
repeat this twenty-five times for a large number of boosting steps
and choose the step number that produces the lowest average out-
of-sample loss.

To summarize, the boosting algorithm for volatility forecasting
consists of the following steps:

1. Initialize function estimate ĝ½0�t ¼ log 1
T�1

PT
t¼1ðyt � �yÞ2

� �
;

�y ¼ 1
T

PT
t¼1yt ; t ¼ 1; . . . ; T.

2. For all zi;t 2 zt , specify regression trees,

f iðzi;tÞ ¼
PJ

j¼1cijIRij
ðzi;tÞ; i ¼ 1; . . . ; r, using stumps, i.e., J ¼ 2. Set

m ¼ 0.
3. Increase m by one.
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Fig. 4. Partial return components (upper half) simulated from (7), indicating how drivers X1 through X6 affect returns, and estimated partial log-volatility (lower half).

S. Mittnik et al. / Journal of Banking & Finance 58 (2015) 1–14 9
4.
(a) Compute the negative gradient in (3) and evaluate

ĝ½m�1�ðztÞ; t ¼ 1; . . . ; T.
(b) Estimate the negative gradient, using the stumps specified

in Step 2. This yields r vectors, where each vector is an esti-
mate of the gradient.

(c) Select the base learner, f̂ ½m�ŝm
; ŝm 2 f1;2; . . . ; rg, that correlates

most with the gradient according to the residual-sum-of-
squares criterion.

(d) Update the current estimate by setting ĝ½m� ¼ ĝ½m�1� þ mf̂ ½m�ŝm
,

where m is the shrinkage factor or the step size.
5. Repeat Steps 3 and 4 until the stopping condition applies.

Appendix B. Illustrating how boosting works

Before applying our boosting approach to forecasting volatility,
we briefly demonstrate the principle ideas of the proposed method
by conducting an illustrative simulation study. To do so, let the data
generating process be given by
yt ¼ expðgt=2Þet

gt ¼ 0:1þ 2x1;t þ 2I½0:1;0:5�ðx2;tÞx2;t � 0:6I½�0:5;�0:2�ðx3;tÞ
þ 0x4;t þ 0x5;t þ 0x6;t ;

ð7Þ

with et �iid Nð0;1Þ and xi;t being the t-th observation of
Xi � U½�0:5;0:5�, i ¼ 1; . . . ;6; t ¼ 1; . . . ; T; T ¼ 400. Note that only
the first three covariates affect volatility—the first linearly, the sec-
ond linearly only for X2 2 ½0:1;0:5�, and the third as a step function.
The last three covariates, X4 through X6, do not contribute, and are
included to check for robustness against false detection. We choose
linear base learners for all but the second and third predictors,
which are fitted with a regression-tree base learner, so that the sec-
ond equation in (7) is fitted as

gt ¼ b0 þ b1x1;t þ
XJ2

j¼1

c2jIR2j
ðx2;tÞ þ

XJ3

j¼1

c3jIR3j
ðx3;tÞ þ b4x4;t

þ b5x5;t þ b6x6;t ; ð8Þ
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where R2j and R3j represent the estimated partitions of the domains
of X2 and X3.

Ideally, the algorithm will recover the b and c parameter values
specified in (8). This means that X4;X5 and X6 should not be
selected at all, i.e., b4 ¼ b5 ¼ b6 ¼ 0, and that the domain of X3

should be partitioned such that only X3 2 ½�0:5;�0:2� affects
volatility. Regarding X2, although having linear impact for
X2 2 ½0:1;0:5� and none otherwise, we intentionally chose an ‘‘in-
correct’’ base learner by specifying a step function, in order to
see whether the influence can still be adequately approximated.

Fig. 4 shows simulated, driver-specific return components
(upper half) and the estimated partial impacts on volatility gt

(lower half). The influence of the underlying volatility drivers
appears to be captured reasonably well. The parameter estimate
b̂1 ¼ 1:463 is low due to parameter regularization via early stop-
ping. This is typical for shrinkage methods, where the parameter
estimates usually have smaller magnitudes than unregularized
solutions and the bias vanishes as the sample size increases. The
advantage of early stopping is that, indeed, no redundant predic-

tors are selected, i.e., b̂4 ¼ b̂5 ¼ b̂6 ¼ 0. Furthermore, X3 has the
largest jumps near the right boundary of the interval ½�0:5;�0:2�,
and the linear impact for X2 2 ½0:2; 0:5� is also captured, despite
the moderate sample size chosen.

The results shown in Fig. 4 are typical in the sense that the vari-
ations in hundreds of repetitions were small. Translating the log
scale in Fig. 4 back to standard deviations gives the estimate of
the conditional density. Fig. 5 (upper half) shows the estimated
partial densities associated with X1;X2 and X3, with the central
95% interquantile ranges represented by the darker segments,
and, in the lower half, simulated return components associated
with these conditional densities. Visual inspection reveals that
variations in volatility are closely captured, a finding that is sup-
ported by the fact that the estimates produce a coverage rate of
95:75% for the 95% interquantile range. The partial contribution
of each driver is readily obtained in an interpretable way: an
increase in X1 causes the variance to grow proportionally; X2 has
an increased impact on the variance for X2 2 ½0:1;0:5�; the variance
contribution markedly decreases for X3 2 ½�0:5;�0:2�; and, with
b̂4 ¼ b̂5 ¼ b̂6 ¼ 0, the estimated conditional density of yt remains,
indeed, invariant with respect to X4;X5 or X6.



Appendix C. Full list of volatility drivers

Horizon 1.

Horizon 2.
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Horizon 3.

Horizon 4.
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Horizon 5.

Horizon 6.

The list of all drivers and their abbreviations is shown in Table 1. The extensions ⁄.L1 and ⁄.L2 refer to the first and the second lag,
respectively.
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